# WHEN DIABETES IS NOT TYPE 2 OR TYPE 1

Tina kader frcp

#### DISCLOSURES

- Lectures
- Sanofi aventis; Medtronic; eli lilly; janssen; astrazeneca; tandem; abbott
- Novonordisk; Bms
- Ad boards as above
- Research Sanofi; novonordisk



# DIABETES IS MORE COMPLICATED WITH MANY DIFFERENT TYPES; EASY APPROACH

- Diabetes can be classified into the following general categories:
- Typeldiabetes(duetoautoimmuneb-celldestruction, usually leading to absolute insulin deficiency, including latent autoimmune diabetes of adulthood)
- Type 2 diabetes (due to a progressive loss of adequate b-cell insulin secretion frequently on the background of insulin resistance)
- Specifictypesofdiabetesduetoothercauses, e.g., monogenicdiabetessyndromes (such as neonatal diabetes and maturity-onset diabetes of the young), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)
- Gestationaldiabetesmellitus(diabetesdiagnosedinthesecondorthirdtrimester of pregnancy that was not clearly overt diabetes prior to gestation)



## **OBJECTIVES**

- Understand other causes of diabetes
- Understand the meaning of monogenic diabetes
- Understand LADA; what is this and which patients should you screen
- Understand other diseases that can present with diabetes;

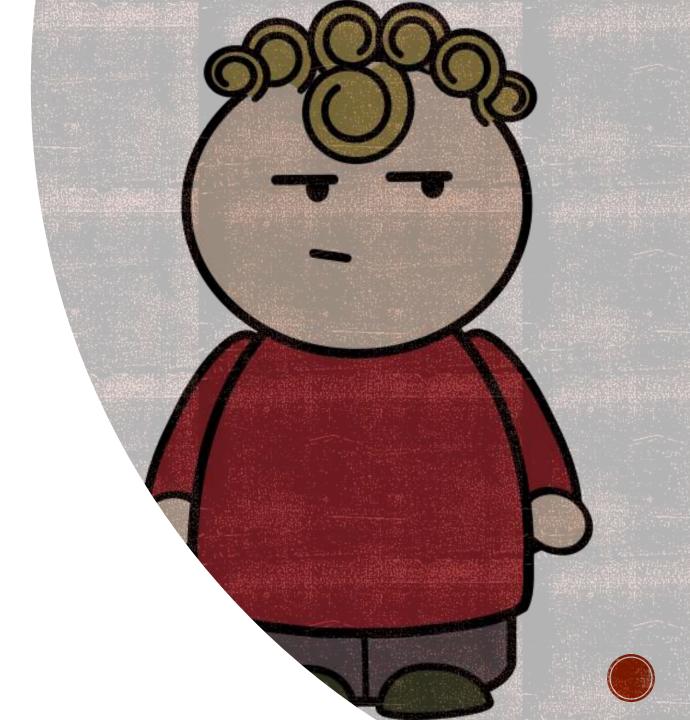


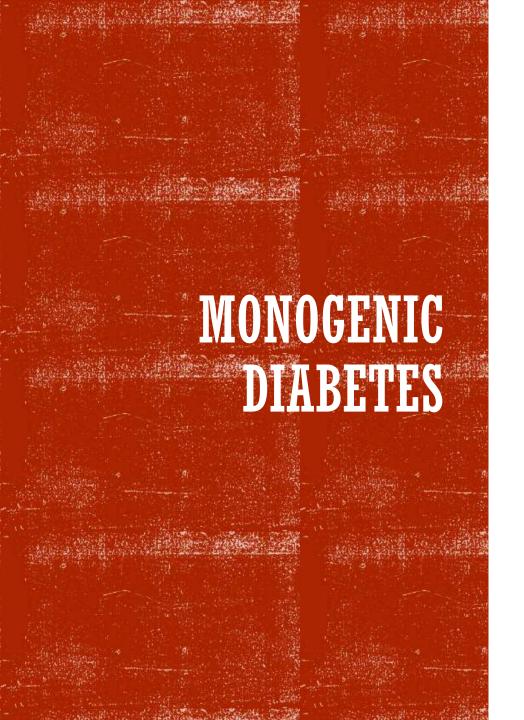
### **OBJECTIVES**

- Understand other causes of diabetes
- <u>Understand the meaning of monogenic diabetes</u>
- Understand LADA; what is this and which patients should you screen
- Understand other diseases that can present with diabetes;

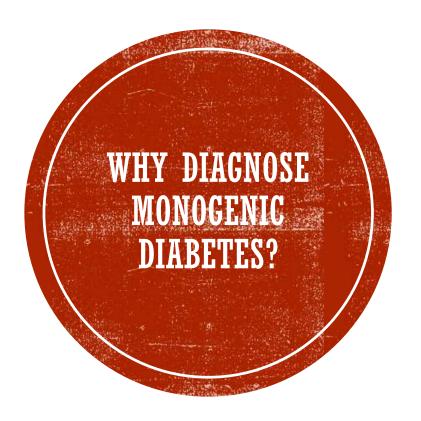


#### MODY


Maturity-Onset Diabetes of the Young


- In 1928, first noticed by Cammidge
- In 1975, first reported as MODY by Tattersall & Fajans ("Father of MODY")



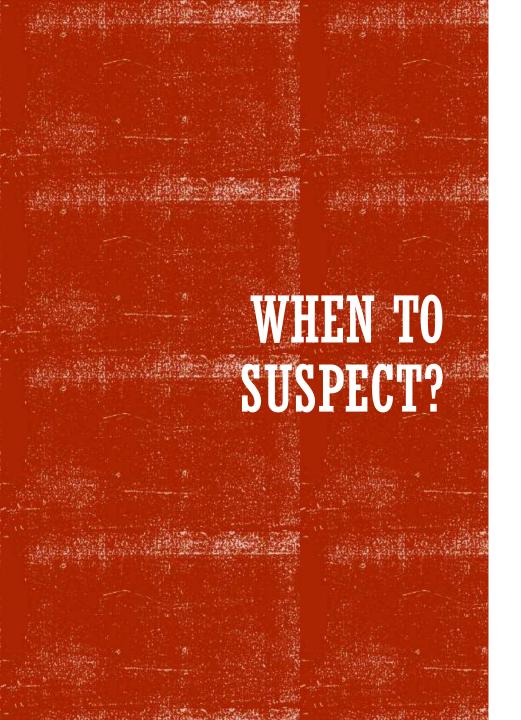

#### CASE 1

- Type 1 diabetes
- Diagnosed at age 12
- Interestingly had neonatal diabetes at birth one of the first cases at jgh
- Obese
- Poorly controlled alc over 8
- Now 24
- Wants to know could she have another diagnosis





- Inheritance of mutation in single gene
- Dominant ,recessive or denovo
- Most are due to mutations in genes which regulate βcell function
- Rare cases due to insulin resistance
- Can mimic type 1 or type 2 diabetes




#### To elucidate the pathophysiology

#### Changes the treatment

#### For example

- NO need of drugs- GCK mutations
- insulin injections being replaced by tablets ( low dose in HNF $\alpha$  or high dose in potassium channel defects -Kir6.2 and SUR1)
- tablets in addition to insulin ( metformin in
- insulin resistant syndromes)



- Diagnosis of type 1 may be wrong when
  - A diagnosis of diabetes before 6 months
  - Family history of diabetes with a parent affected
  - Evidence of endogenous insulin production outside the 'honeymoon' phase (after 3 years of diabetes)
  - When pancreatic islet autoantibodies are absent,especially if measured at diagnosis

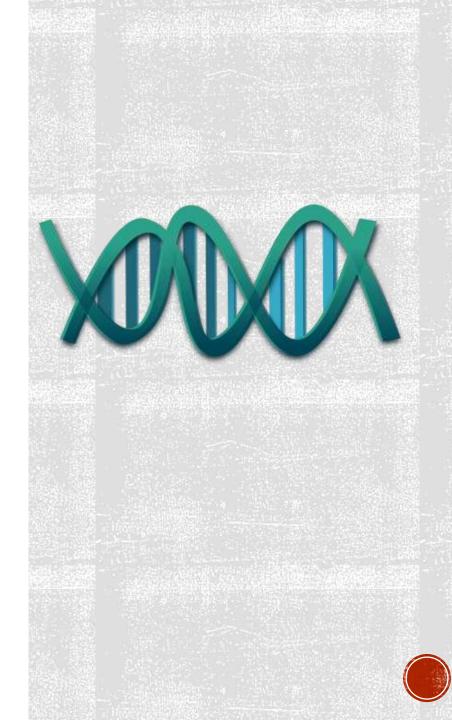
#### ALWAYS LISTEN TO YOUR PATIENTS

- She brought an article to me; that neonatal diabetes
- May be associated with a gene that may respond to tx with medications
- I was skeptical
- Take a patient off insulin



# DID MY RESEARCH CONTACTED HER PEDIATRIC ENDO

- Sure enough she had a gene that encoded for monogenic diabetes
- Stopped insulin gradually
- Started diabeta
- Now 10 years later
- Lost 50 lbs
- Alc 0.066




#### SUMMARY

- Consider monogenic diabetes in young patients /those not fitting the original diagnosis
- Molecular testing available free for some-but careful patient selection is the key
- Diagnosing monogenic DM can free the patient from "shots"
- It is also cost effective to the system



| Mechanism of Beta-cell dysfunction            | Gene/Mutation           |  |
|-----------------------------------------------|-------------------------|--|
| Reduced Beta-cell number                      | IPF1 homozygous         |  |
|                                               | PTF1A                   |  |
| Pancreatic aplasia                            | HNF1B                   |  |
|                                               | GCK                     |  |
| Deduced B cell development                    | Mitochondrial           |  |
| Reduced B-cell development Reduced metabolism | mutations               |  |
|                                               | HNF1A                   |  |
| Reduced glucose sensing Reduced metabolism    | HNF1B                   |  |
| Reduced metabolism                            | HNF4A                   |  |
|                                               | IPF1 heterozygous       |  |
| Failure to depolarize membrane                | KCNJ11                  |  |
| Failure to close K <sub>ATP</sub> channel     | ABCC8                   |  |
|                                               | FOXP3                   |  |
|                                               | INS                     |  |
| Increased destruction of B-cells              | EIF2AK3                 |  |
| Immune-mediated destruction                   | WFS1                    |  |
| Endoplasmic reticulum stress                  | HNF1A                   |  |
| Increased apoptosis cause uncertain           | HNF4A                   |  |
|                                               | Mitochondrial mutations |  |



|                   | Gene                    | Inheritance                  | Clinical features                                                                                                                                                                                                                   |
|-------------------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODY              | GCK                     | AD                           | GCK-MODY: stable, nonprogressive elevated fasting blood glucose; typically does not require treatment; microvascular complications are rare; small rise in 2-h PG level on OGTT (<54 mg/dL [3 mmol/L])                              |
|                   | HNF1A                   | AD                           | HNF1A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; lowered renal threshold for glucosuria; large rise in 2-h PG level on OGTT (>90 mg/dL [5 mmol/L]); sensitive to sulfonylureas |
|                   | HNF4A                   | AD                           | HNF4A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; may have large birth weight and transient neonatal hypoglycemia; sensitive to sulfonylureas                                   |
|                   | HNF1B                   | AD                           | HNF1B-MODY: developmental renal disease (typically cystic); genitourinary abnormalities; atrophy of the pancreas; hyperuricemia; gout                                                                                               |
| Neonatal diabetes | KCNJ11                  | AD                           | Permanent or transient: IUGR; possible developmental delay and seizures; responsive to sulfonylureas                                                                                                                                |
|                   | INS                     | AD                           | Permanent: IUGR; insulin requiring                                                                                                                                                                                                  |
|                   | ABCC8                   | AD                           | Permanent or transient: IUGR; rarely developmental delay; responsive to sulfonylureas                                                                                                                                               |
|                   | 6q24 (PLAGL1,<br>HYMA1) | AD for paternal duplications | Transient: IUGR; macroglossia; umbilical hernia; mechanisms include UPD6, paterna duplication or maternal methylation defect; may be treatable with medications other than insulin                                                  |
|                   | GATA6                   | AD                           | Permanent: pancreatic hypoplasia; cardiac malformations; pancreatic exocrine insufficiency; insulin requiring                                                                                                                       |
|                   | EIF2AK3                 | AR                           | Permanent: Wolcott-Rallison syndrome: epiphyseal dysplasia; pancreatic exocrine insufficiency; insulin requiring                                                                                                                    |
|                   | EIF2B1                  | AD                           | Permanent diabetes: can be associated with fluctuating liver function (138)                                                                                                                                                         |
|                   | FOXP3                   | X-linked                     | Permanent: immunodysregulation, polyendocrinopathy; enteropathy X-linked (IPEX) syndrome: autoimmune diabetes, autoimmune thyroid disease, exfoliative dermatitis; insulin requiring                                                |





1. Neonatal diabetes and diabetes diagnosed within the first 6 months of life

2. Familial diabetes with an affected parent

3. Mild (5.5–8.5 mmol/l) fasting hyperglycaemia especially if young or familial

4. Diabetes associated with extra pancreatic features

#### MONOGENIC DIABETES

- 35 year old followed by another endocrinologist
- Diagnosed with type 2
- On metformin
- Trying to get pregnant
- Renal cysts; liver abnormalities; low magnesium
- how to tie this all together
- Monogenic diabetes
- Be alert for this diagnosis; lean; family history; negative antibodies





|                   | Gene                    | Inheritance                  | Clinical features                                                                                                                                                                                                                   |
|-------------------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODY              | GCK                     | AD                           | GCK-MODY: stable, nonprogressive elevated fasting blood glucose; typically does not require treatment; microvascular complications are rare; small rise in 2-h PG level on OGTT (<54 mg/dL [3 mmol/L])                              |
|                   | HNF1A                   | AD                           | HNF1A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; lowered renal threshold for glucosuria; large rise in 2-h PG level on OGTT (>90 mg/dL [5 mmol/L]); sensitive to sulfonylureas |
|                   | HNF4A                   | AD                           | HNF4A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; may have large birth weight and transient neonatal hypoglycemia; sensitive to sulfonylureas                                   |
|                   | HNF1B                   | AD                           | HNF1B-MODY: developmental renal disease (typically cystic); genitourinary abnormalities; atrophy of the pancreas; hyperuricemia; gout                                                                                               |
| Neonatal diabetes | KCNJ11                  | AD                           | Permanent or transient: IUGR; possible developmental delay and seizures; responsive to sulfonylureas                                                                                                                                |
|                   | INS                     | AD                           | Permanent: IUGR; insulin requiring                                                                                                                                                                                                  |
|                   | ABCC8                   | AD                           | Permanent or transient: IUGR; rarely developmental delay; responsive to sulfonylureas                                                                                                                                               |
|                   | 6q24 (PLAGL1,<br>HYMA1) | AD for paternal duplications | Transient: IUGR; macroglossia; umbilical hernia; mechanisms include UPD6, paterna duplication or maternal methylation defect; may be treatable with medications other than insulin                                                  |
|                   | GATA6                   | AD                           | Permanent: pancreatic hypoplasia; cardiac malformations; pancreatic exocrine insufficiency; insulin requiring                                                                                                                       |
|                   | EIF2AK3                 | AR                           | Permanent: Wolcott-Rallison syndrome: epiphyseal dysplasia; pancreatic exocrine insufficiency; insulin requiring                                                                                                                    |
|                   | EIF2B1                  | AD                           | Permanent diabetes: can be associated with fluctuating liver function (138)                                                                                                                                                         |
|                   | FOXP3                   | X-linked                     | Permanent: immunodysregulation, polyendocrinopathy; enteropathy X-linked (IPEX) syndrome: autoimmune diabetes, autoimmune thyroid disease, exfoliative dermatitis; insulin requiring                                                |



#### MONOGENIC DIABETES SYNDROMES

#### Recommendations

- 2.22 All children diagnosed with diabetes in the first 6 months of life should have immediate genetic testing for neonatal diabetes. A
- 2.23 Children and those diagnosed in early adulthood who have diabetes not characteristic of type 1 or type 2 diabetes that occurs in successive generations (suggestive of an autosomal dominant pattern of inheritance) should have genetic testing for maturity-onset diabetes of the young. A
- 2.24 In both instances, consultation with a center specializing in diabetes genetics is recommended to understand the significance of these mutations and how best to approach further evaluation, treatment, and genetic counseling. E

# TAKE HOME MESSAGE 1

- Think about it in your young patients
- Negative antibodies for type 1
- Family history positive; dominant fashion
- Extra pancreatic abnormalities



## **OBJECTIVES**

- Understand other causes of diabetes
- Understand the meaning of monogenic diabetes
- <u>Understand LADA; what is this and which patients should you screen</u>
- Understand other diseases that can present with diabetes;



#### LADA

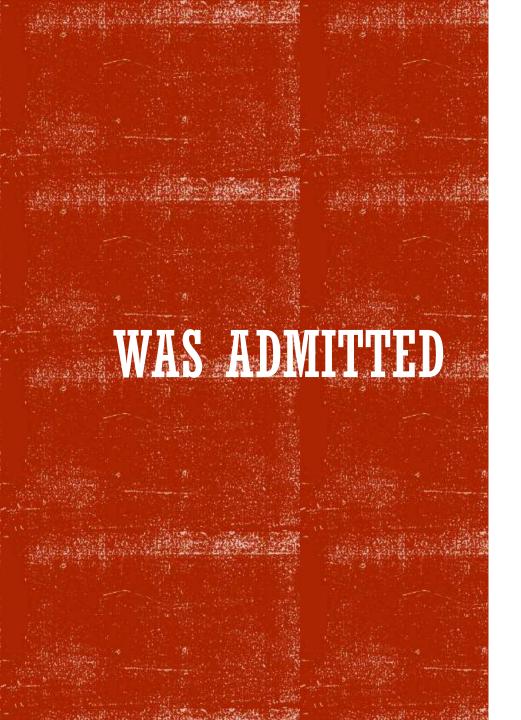
- Definition
- Late onset autoimmune
- Think about it in slim type 2 diabetes
- family history autoimmunity
- Progression to insulin



#### CASE

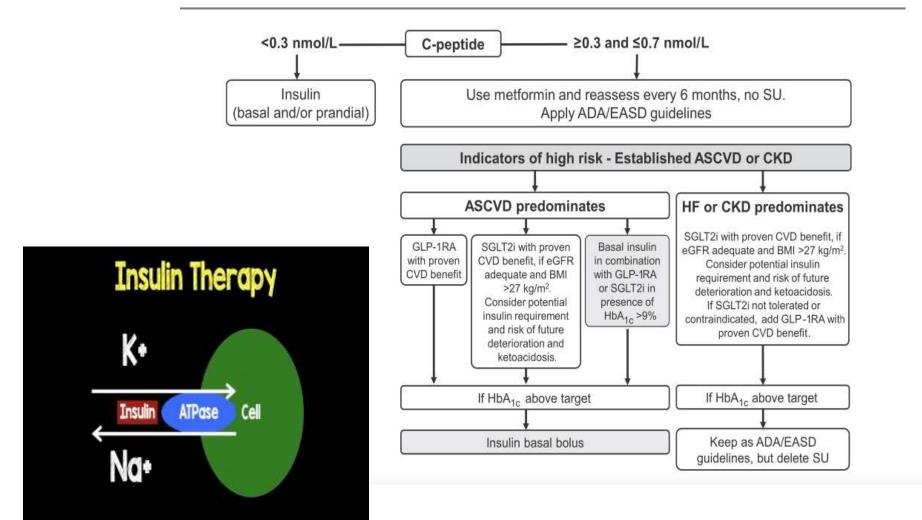
- 50 year old
- Prediabetes for a few years
- hashimotos
- In summer 2021 fasting sugar a bit high 6.4
- Alc 0.062
- Declined metformin
- Followed diet
- 4 months later polyuria and polydipsia
- Sugar random 30
- Alc 10 percent




#### LADA



#### Table 1-Broad characteristics of LADA\*


- Age >30 years\*\*
- Family/personal history of autoimmunity
- Reduced frequency of metabolic syndrome compared with T2D—lower HOMA, lower BMI, lower blood pressure, and normal HDL compared with T2D
- No disease-specific difference in cardiovascular outcomes between these patients and those with T2D
- . C-peptide levels decrease more slowly than in T1D
- Positivity for GADA as the most sensitive marker; other autoantibodies less frequent (ICA, IA-2A, ZnT8A, and tetraspanin 7 autoantibodies)
- · Non-insulin requiring at onset of diabetes

\*None of these features categorically define LADA. \*\*Limited data on older patients with higher probability of T1D in younger patients.



- Sent home on orals and basal
- cpeptide normal but low end
- Rapidly improved; even 4 units make her hypoglcyemic
- Had ordered antigad and cpeptide
- Insulin stop
- On glumetza and Jardiance
- Has Dexcom
- Normal sugars
- Aware of risk ketoacidosis

#### TREATMENT ALOGORITHMS





#### TAKE HOME MESSAGE 2

- LADA PATIENTS ARE IN YOUR PRACTISE
- THINK ABOUT THIS IF LEAN; ORAL OR OTHER INJECTABLES NOT WORKING
- OTHER AUTOIMMUNE DISORDERS
- GET ANTIGAD AND CPEPTIDE
- AT RISK OF DKA IF CPEPTIDE GETS LOWER



### **OBJECTIVES**

- Understand other causes of diabetes
- Understand the meaning of monogenic diabetes
- Understand LADA; what is this and which patients should you screen
- Understand other diseases that can present with diabetes;



#### 50 YEAR OLD TYPE 2

- NEW CASE
- 50 YEARS OLD
- TYPE 2 DM 15 YEARS
- CAROTID ARTERY DISEASE
- NO CAD
- INSULIN PUMP VICTOZA INVOKANA
- BASAL RATES 4 UNITS PER HOUR



#### EXAM

- CUSHINGOID
- SUPRACLAVICULAR FAT PADS
- MOON FACES TRIPLE CHINNED
- ABDOMINAL OBESITY
- NO STRIAE; NO PURPURA
- VERY MUSCULAR ARMS AND LEGS; SUPER ATHLETIC LOOKING
- LABS LDL 1.8
- A1C 0.067
- 24 HOUR CORTISOL NORMAL
- CT ABD NORMAL ADRENALS DONE FOR OTHER REASONS
- LFTS NORMAL
- TG MILDLY ELEVATED



### PARTIAL LIPODYSTROPHY

- DUNIGANS
- CAN LEPTIN HELP



| Туре                                                   | Salient features                                                                                                                                    | Mode of inheritance                             | Genetic defects                     |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|--|
| Congenital generalized lipodystrophy                   | Generalized deficiency of<br>subcutaneous fat from birth                                                                                            |                                                 |                                     |  |
| Familial partial lipodystrophy                         | Loss of subcutaneous fat<br>from extremities with<br>variable loss/excess of fat<br>from trunk and face                                             | Autosomal dominant<br>(usually)                 | LMNA, PPARG, AKT2,<br>PLIN1, CIDEC* |  |
| Lipodystrophy in association with other rare syndromes | Variable degree of fat loss<br>in association with features<br>of other syndromes such as<br>MAD, SHORT, progeria and<br>autoinflammatory syndromes | Both autosomal recessive and autosomal dominant | LMNA, ZMPSTE24,<br>PSMB8, PIK3R1    |  |
| Acquired Lipodystrophie                                | S                                                                                                                                                   | 2)/                                             | <b>%</b>                            |  |
| Acquired generalized lipodystrophy                     | Development of generalized loss of subcutaneous fat, with normal fat distribution at birth                                                          |                                                 |                                     |  |
| Acquired partial lipodystrophy                         | Loss of subcutaneous fat from face, upper extremities and trunk, but not from lower extremities                                                     |                                                 |                                     |  |
| HIV-associated<br>lipodystrophy                        | Loss of fat from face and limbs with variable loss/excess from trunk and associated with antiretroviral therapy                                     |                                                 |                                     |  |
| Localized lipodystrophy                                | Patchy loss of subcutaneous fat usually following trauma or injections                                                                              |                                                 |                                     |  |


Abbreviations in the table: MAD, mandibuloacral dysplasia; SHORT, short stature, hyperextensibility, hernia, ocular depression, Rieger anomaly and teething delay.



<sup>\*</sup>CIDEC reported in a single patient with autosomal recessive inheritance.





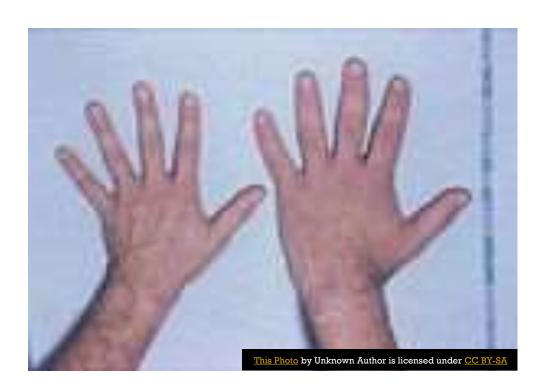




# OTHER DIAGNOSIS THAT CAN PRESENT WITH TYPE 2 DIABETES

- 60 year old male
- Come to my clinic in the states
- Type 2 diabetes followup
- On 3 ORAL AGENTS alc 0.085
- Nothing really remarkable in history
- Sleep apnea
- Has noticed feet have enlarged and rings no longer fit




#### ON EXAM

- Bp 140/90
- Macroglossia
- Large hands
- Frontal bossing
- Thyromegaly
- Cvs normal
- Resp clear
- Large thick heels









### WAS NOT JUST TYPE 2 DIABETES

- Igf l elevated
- Glucose tolerance unsuppressed gh
- Mri small microadenoma
- Transphenoidal in boston;
- Resolved igf1
- Alc now 0.065
- Sleep apnea improved
- TAKE HOME MESSAGE; KEEP YOUR EYES OPEN; VERY SUBLTE CHANGES IF YOU SEE PATIENTS OFTEN MAY NOT NOTICE CHANGES
- HAVE THEM BRING OLD PICTURES

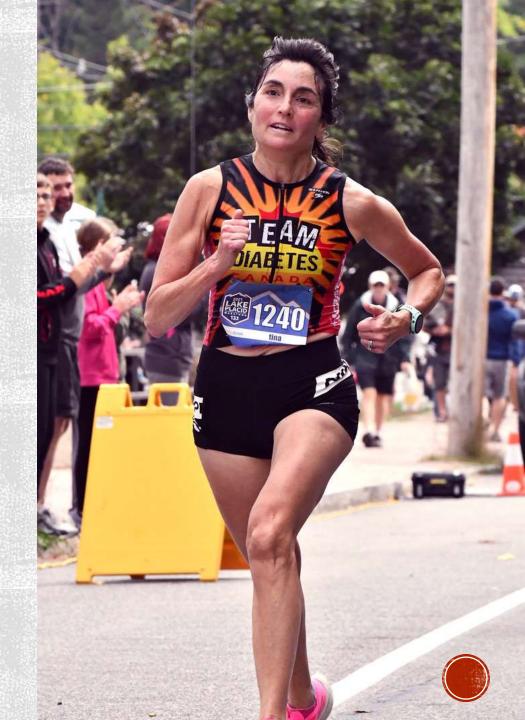




# TYPE 2 DIABETES ONLY?

- TYPE 2 DIABETES FOLLOWUP
- WEIGHT GAIN
- NEW STRIAE
- HYPERTENSION
- SO WHAT COMMON IN YOUR PATIENTS
- YOU DON'T WANT TO MISS THIS DIAGNOSIS




#### CUSHINGS SYNDROME

- DEXAMETHASONE SUPPRESSION
- 100; ABNORMAL
- ACTH SUPPRESSED
- MRI ADRENAL NODULE 3 CM
- RESECTED;
- COMPLETE RESOLUTION OF DIABETES
- AND HYPERTENSION



#### MIDDLE AGED EX ATHLETE

- Family history of dominant
- Lean diabetes
- Early heart disease
- Genes waiting to be discovered
- Come back in 5 years
- Thank you!!!!!!

