Is Occupational Asthma Under-diagnosed?

Dr Peter Rohan

Annual Refresher Course for Family Physicians 2021-11-29

Workshop

Conflict of Interest Disclosure

 I currently have not and did not have in the past any affiliation with/or financial interest of any nature in a business corporation or receive remuneration, royalties or research grants from business corporations in relation to the subject of this presentation

Learning Objectives

At the end of this workshop, participants will be able to:

- Use a stepwise approach to diagnose Occupational Asthma (OA)
- Recognize some factors that might delay the diagnosis of OA
- Learn how to improve the diagnosis of OA

Outline

- Review of different types of OA
- Recognize the causes of a delay in diagnosing OA
- How to improve the diagnosis of OA
- Clinical cases

Work Related Asthma - WRA

<u>Definition of OA (ACCP)</u>:

"De novo asthma or the recurrence of quiescent in remission asthma (i.e. childhood asthma) Induced by either sensitization to a specific substance (e.g. inhaled protein) or by a chemical at work which is termed <u>sensitizer-induced OA</u>, or by exposure to an inhaled irritant at work which is termed <u>irritant-induced OA</u>"

Sensitizer-Induced OA

- 90%
- Latency period
- IgE mediated to HMW sensitizers
- Incidence 13 to 178 new cases/million workers
 - HMW (>10kd) flour, animal protein, fungi, enzymes, plants, latex, cannabis)
 - LMW (<10kd) chemicals (diisocyanates), metals (chromium), wood dust (red cedar)
 - Most HMW (complete Ag) and some LMW (from functional haptens) through IgE-dependent mechanisms

Sensitizer-Induced OA

- Environmental risk factors level of exposure
 - Dose response relationship
- Individual risk factors
 - **Atopy** (\uparrow risk of OA 8-fold in bakers but no Δ in onset of symptoms
 - Occupational Rhinitis (OR) in 84.5% of cases OR precedes OA
 - previous Airway Hyper-Responsiveness (AHR) ≠ risk factor

<u>Irritant Induced OA (IIOA) - RADS</u>

- 5-18% of OA
- Without a latency period within 24 hours after exposure
- Accidental high exposure (or repeated low exposure to an irritant)
- Other phenotypes of IIOA:
 - WTC attacks 2001
 - Graniteville (SC) derailment released 54 metric tons of chlorine - 2005

10 months after the acute exposure

- LMW chemicals
 - Chemicals (diisocyanates, epoxy, ammonia...)

Features of IIOA - RADS

Criteria for RADS (Brooks et al.	Modified Criteria for RADS
History of new-onset of asthma	History of new-onset asthma or recurrence of childhood asthma
Symptoms onset related to single high- level exposure (accidental)	Symptoms onset related to one or more high-level exposures
Onset of symptoms <24 hr after exposure	Symptoms can begin >24 hr (up to several days) after exposure
Exposure to very high concentration of gas, fume, or spray with known irritant properties	List of exposures includes highly irritant dust (e.g. WTC collapse
Airway hyper-responsiveness or reversible airflow obstruction	Airway hyper-responsiveness or reversible airflow obstruction
Symptoms persistent >3 months	Symptoms persistent >3 months
No previous lower respiratory tract symptoms	Previous disease associated with smoking or atopy may be difficult to rule out

	OA with Latency	RADS / IrIA
Latency period	Present	Absent
Diagnosis	History PFT – Methacholine PEFR IgE HMW	History PFT – Methacholine LMW
Pathology	Similar to Asthma Activation of T-Lymphocytes Eosinophilic inflammation B-cell – IgE – Mast cell - Histamine	Acute: epithelial shedding and hemorrhage Chronic: regeneration of epithelial cells; few lymphocytes_and neutrophils; increased collagen deposition and thickness of basement membrane
PFT	Better reversibility to BD	Less reversibility to BD

Work Exacerbated Asthma - WEA

- Exacerbated but not caused by work environment
 - 21.5% of working asthmatics (Prevalence 13-58%)
- Wide range of frequency and severity of WEA
- PEFR, Methacholine, Induced sputum off vs at work
- SPT, slgE (62% pos. bakery workers with OA, 28% with WEA)
- Diagnostic criteria (Quebec) Objective deterioration
- Underdiagnosed

Diagnosis of OA

Occupational asthma suspected:

- 16-18% of adult-onset asthma is OA (mean age 38 y)
- Assess exposure
 - Occupational and clinical history
 - Material Safety Data Sheet MSDS
- History of asthma onset or aggravation after a job change
- No good response to therapy
- Chronology of Symptoms at work and/or at night and improved on weekends and holidays (Non-OA – 41%↓ on weekends, 54%↓ on holidays)
- Early, Late and Dual response
- OA patients have more sick days compared to NOA patients
 - and more ER visits

Diagnosis of Occupational Asthma

- Steps to confirm OA
 - Clinical and Occupational history (PPV 63%)
 - Spirometry and Non-Specific Bronchial responsiveness (NSBR) Methacholine confirms Asthma
 - Specific Inhalation Challenge (SIC)
 - at work
 - In the lab

Diagnosis of Occupational Asthma

- Peak Expiratory Flow Rates PEFR ↓ 20% (sensitivity – 64%, specificity – 77%)
- Immunological markers
 - Skin Prick Test SPT
 - Specific IgE sIgE
- Biological markers airway inflammation
 - Induced sputum (<2% of eosinophils)
 - Fractional Exhaled Nitric Oxide (FeNO) 个 after SIC

Causes of the delayed diagnosis of OA

- Lack of awareness and under-reporting (patients, employers and healthcare professionals)
- Missing Occupational history including exposure history (MSDS)
- Symptomatic outside of work as well
- Symptoms presenting only outside of work
- Delay or no testing done and no Specific Inhalation Challenge - SIC
- Delay in Pneumology or Occupational medicine consultations
- 4 year delay in the diagnosis of OA

Case # 1

• *39y male*

SOBOE

Nasal congestion and sneezing

No wheezing, chest tightness or frequent cough

No chest tightness, wheezing or cough

Occupational History

What do you do? Works in a bakery for the past 15 years

How do you do it? Operates mixers and ovens

Are you concerned about any exposures or health hazards on and/or off the job?

not really

Co-workers or other exposed?

- no one seems to be sick

Safeguards and satisfaction? likes the job

• <u>PMHx:</u>

- N/C
- No history of asthma, (none in his family)
- Allergies None known
- Smoking never
- <u>O/E:</u>
 - Normal

- Chest X-ray normal
- Skin PrickTests (SPT):
 - Wheat flour ++
 - Oat flour +++
 - Rye flour +++
 - Soya flour +++
 - Barley flour ++
 - Corn flour ++
- Flow rates N

PHYSIOLOGIE CARDIO-RESPIRATOIRE MONTREAL CHEST INSTITUTE CARDIO-RESPIRATORY PHYSIOLOGY

ÉPREUVES DE ROUTINE ROUTINE TEST

L	a	S	t		N	a	m	Θ	÷					
T	d	e	n	t	i	f	i	C	a	t	i	on	:	

Age: Height: Weight:

Diagnosis:

39 Years 168 cm 103 kg ASTHMA First Name: Sex: Physician: Resp.Therapist:

Medication: Smoker: male
DR. ROHAN
M-T AMBAYEC RRT
NONE RESP

NEVER

	Pred	Pre	%Pred
Date	28	3/10/2008	*
FEV 1	3.60	3.03	84.1
FVC	4.32	4.09	94.6
FEV1%F	82.72	74.08	89.6
MMEF	4.28	2.16	50.4
PEF	8.79	7.22	82.2
FEF 50	4.81	2.69	55.9
FIF 50		3.22	
TLC	6.34	6.24	98.4
VC	4.51	4.43	98.3
ITGV	2.99	2.49	83.3
ERV	1.35	0.68	50.4
RV	1.83	1.81	99.0
IC		3.75	
TLCOSB	31.63	32.66	103.2
VA	6.19	5.64	91.1
PIMAX	113.09	- 75	
PeMax	148.05	7 1/10	

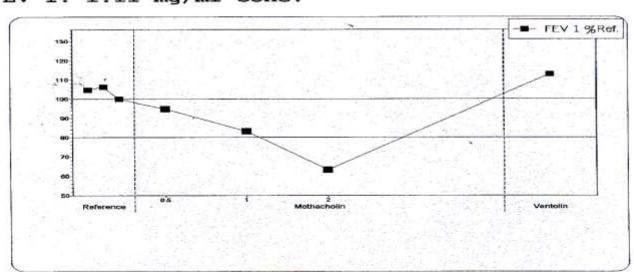
PFT DONE IN AM.MIP= -75 cm H20, MEP=140 cm H20.SPO2 R/A=98 %. HR=72 .

INSTITUT THORACIQUE DE MONTREAL PHYSIOLOGIE CARDIO-RESPIRATOIRE MONTREAL CHEST INSTITUTE RESPIRATORY PHYSIOLOGY

BRONCHOPROVOCATION (METHACHOLINE)

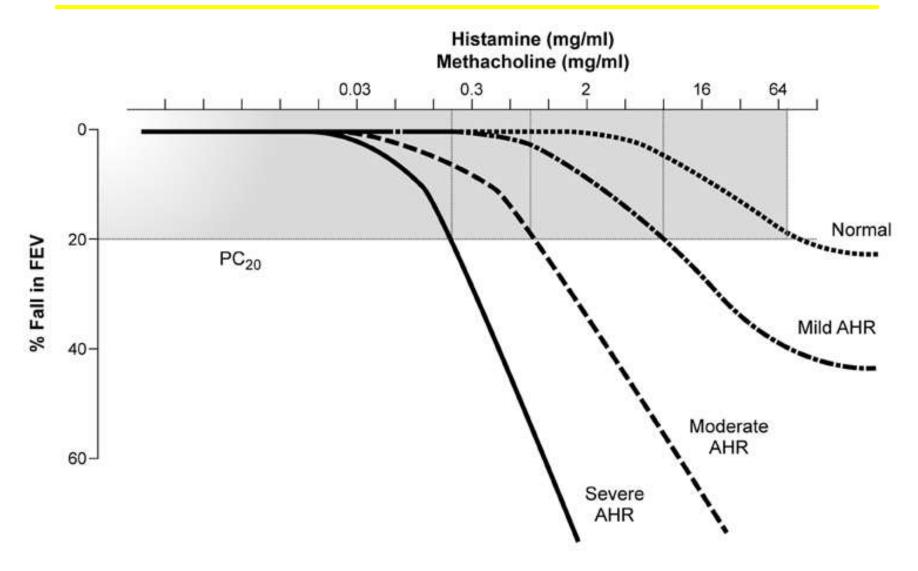
Last Name: Identification:

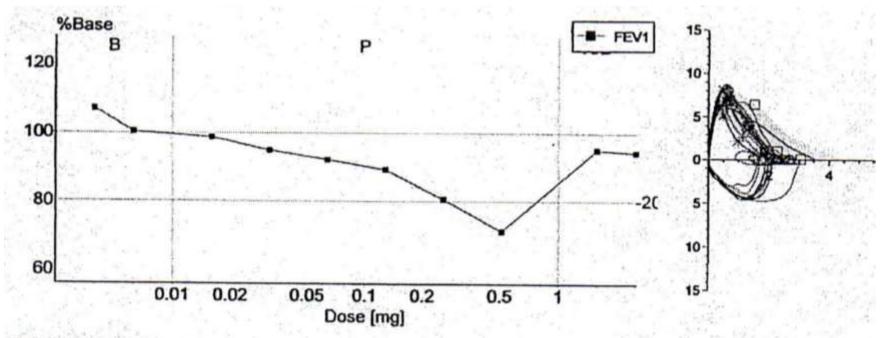
Age: Height: Weight: Diagnosis: 39 Years 168 cm 103 kg ASTHMA First Name: Sex: Physician: Resp.Therapist: Medication: Smoker:


male
DR. ROHAN
M-TERESA AMBAYEC RET
NONE RESP
NEVER

	Date			28/10/2008				
	Pred	Act1	Act2	Act3	Act4	Act5	Act6	Act7
Step		R1	R2	R3	P4 0.5 mg/ml	P5 1 mg/ml	P6 2 mg/ml	D7 2 Puffs
FEV 1	3.60	3.03	3.07	2.89	2.74	2.41	1.83	3.27
	Pred	Act8	Act9	Act10	Act11	Act12	Act13	Act14

Step Conc FEV 1


3.60


PC[-20] FEV 1: 1.11 mg/ml Conc.

Measuring Airway Responsiveness

Threshold dose

PD/PC[-20] FEV1: = 0.262 mg Methacholin

CATEGORISATION OF AIRWAY RESPONSE TO METHACHOLINE

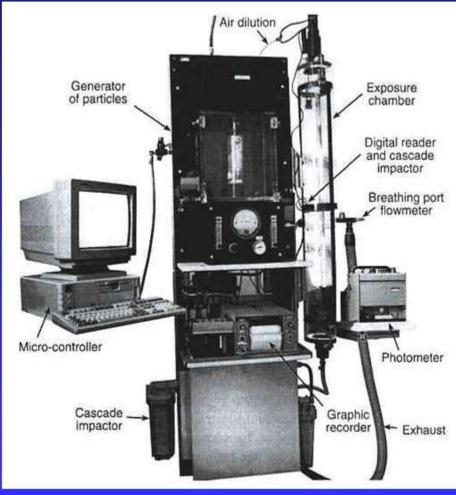
PD ₂₀ (mg)	PO _m (mcg)	PC _W (mg/ml)	Interpretation
>0.400	>400	>16	Normal
0.100-0.400	100 - 400	4-16	Borderline Alrway Hyper responsiveness
0.025-0.100	25-100	1-4	Mild Airway Hyper responsiveness
0.006-0.025	6-25	0.25 - 1	Moderate Airway Hyper responsiveness
<0.006	<6	< 0.25	Marked Airway Hyper responsiveness

Br Me

Comments

PEFR (ml) FEV1 (L)

Weekends: 480 ml 3.80


Mondays: 470 ml 3.20

Thursdays &

Fridays: **390** ml **2.80**

Tests de provocation bronchique spécifiques en laboratoire

Réaliste

Générateur de particules ou d'aérosols

Management

- ICS with LABA
- Removal from the exposure vs exposure reduction
- Respiratory protection devices (RPD)
- Change the Job

 A 58-year-old structural technician suddenly became symptomatic after a tank entry (not using self contained breathing apparatus he noticed an air leak in his full-face mask).

He presented with sudden SOB, wheezing, coughing and was taken to ER.

He experienced 3 other episodes within the next year so he quit his job because of difficulty to control his asthma.

 He recalled that for the past 5 years he had frequent similar though milder reactions which improved spontaneously when he was not exposed at work.

Occupational History

What do you do? For 25 years as a structural technician mostly in aviation

How do you do it? Various structural repairs, tank sealing...

Are you concerned about any exposures or health hazards on and/or off the job?

- became concerned after several ER visits, using epoxy resins, glues, solvents (MEK)...

Co-workers or other exposed?

- Does not know

Safeguards and satisfaction? likes the job

What went wrong?

- Not recognizing a continuous exposure resulting in respiratory symptoms despite regular annual visits to F.Dr.
- ER did not advise the patient about possible dangers of his exposures at work
- F.Dr. did not follow on a red flag arising from work exposures and ER visits
- Respirology consultation was only requested after the patient stopped working
- The respirologist asked for an Occupational medicine consultation (after 2 years being off work)

Management

- Difficulty to control the patient's asthma
- Investigation is on-going
- The patient does not want to go back to work as a structural technician
- Investigation at work not possible two years after quitting his job

Key points

- Early diagnosis and avoidance of offending agent(s)
 can <u>avoid chronicity</u> (currently, 75% of workers are left with permanent asthma (though often mild) after 1 year from the onset of the symptoms
- 16 18 % of adult-onset asthma is OA
- Occupational history (WHACS)
- Initiate investigation while your patient is still at work
- Open a CNESST file by referring the patient to an OLDC (CMPP) once you suspect an OA
- 6 months to declare after you suspect the Dx of OA
- "Sneezing before wheezing"

References

- Susan M. Tarlo, M.B., and Catherine Lemiere, M.D. Occupational Asthma
 N. Engl. J Medicine 2014;370: 640-9
- Susan M. Tarlo Update on Work-Exacerbated Ashma International Journal of Ocupational Medicine and Environmental Health 2016;29(3):369-374
- M. Cormier, C. Lemière Occupational Asthma, Occupational Lung Disease Series – 2019
- Prolong P.A, Cartier A. review of diagnostic challenges in occupational Asthma – Curr Allergy asthma Rep (2017) 17: 1
- Toxline Toxnet <u>www.sis.nlm.nih.gov/sis1/</u>
- CTQ (Centre de toxicologie du Quebec) www.ctq.qc.ca
- MSDS (Material Safety Data Sheet) <u>www.msdsonline.com</u>
- ATSDR (Agency for Toxic Substances and Disease Registry) –
- www.atsdr.cdc.gov
- Environment Canada <u>www.ec.gc.ca</u>
- CNESST <u>www.reptox.cnesst.qc.ca</u>
- IRSST <u>www.irsst.qc.ca</u>
- Public Health Montréal-Centre <u>www.santepub-mtl.qc.ca</u>

Thank you

