Oligometastatic (PCa) State: hype, hope and holes in knowledge

Alejandro Berlin, MD, MSc

Clinician-Scientist

Radiation Medicine Program, Princess Margaret Cancer Centre Department of Radiation Oncology, University of Toronto Techna Institute, University Health Network

Disclosures

No relevant for this talk

	Company/ Organization	Details
I am a member of an Advisory Board or equivalent with a commercial or non-commercial organization	Vaccinex Inc (VCNX, Nasdaq)	
I have received a grant(s) or an honorarium from a commercial or non-commercial organization.	Abbvie, Astellas, Sanofi, GenomeDX.	Grants
I hold investments in a pharmaceutical organization, medical devices company or communications firm.	Vaccinex Inc (VCNX, Nasdaq) Avicanna Inc	Stock Options
I am currently participating in or have participated in a clinical trial within the past two years.	NRG-GU006 (local PI) FPX-01-01 (RLT anti IGF-1R)	Janssen and GenomeDX Fusion Pharmaceuticals Inc

Disclosures

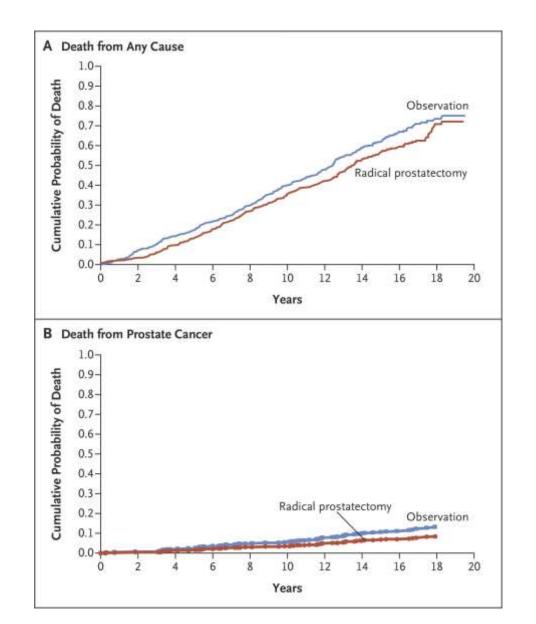
Explore

Notifications

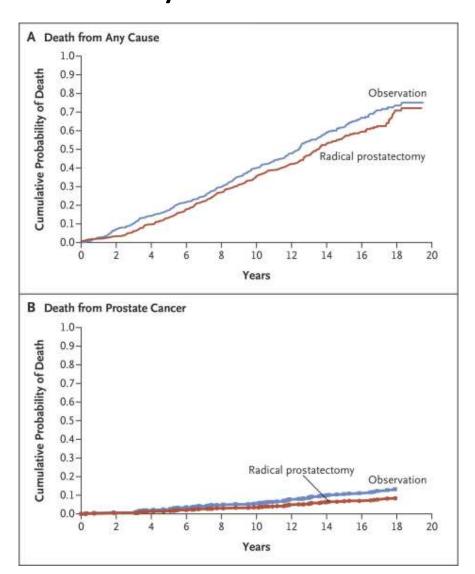
Messages

☐ Bookmarks

≡ Lists


Profile

More



First lets contextualize the non-'extreme'

Oh boy....

Presentation Schema

- Oligometastatic (OM) State in Oncology
 - Overarching hypothesis
 - Evidence of existence and treatment benefit
 - Some definitions
- OM/OR State in PCa
 - Evidence supporting existence
 - Treatment results
- Final thoughts

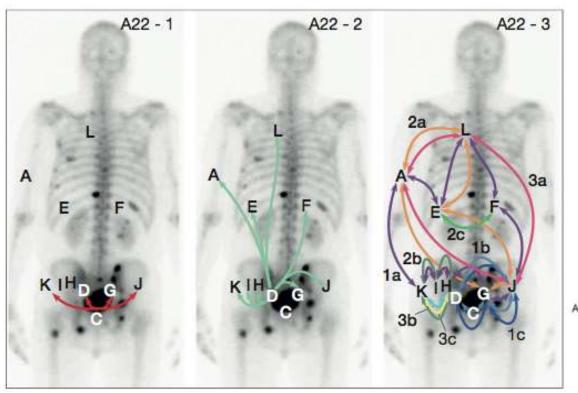
Presentation Schema

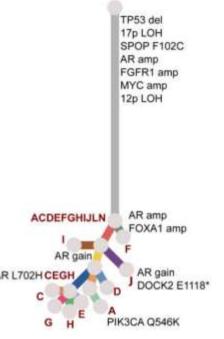
- Oligometastatic (OM) State in Oncology
 - Overarching hypothesis
 - Evidence of existence and treatment benefit
 - Some definitions
- OM/OR State in PCa
 - Evidence supporting existence
 - Treatment results
- Final thoughts

Oligometastatic State

- M1 = incurable.... but....
 - "Cancer comprises a biological spectrum, extending from when a disease is localized to one that is systemic when first detectable but with many intermediate states."
 - "An attractive consequence [of the] oligometastatic state is that some patients should be amenable to a <u>curative</u> therapeutic strategy"

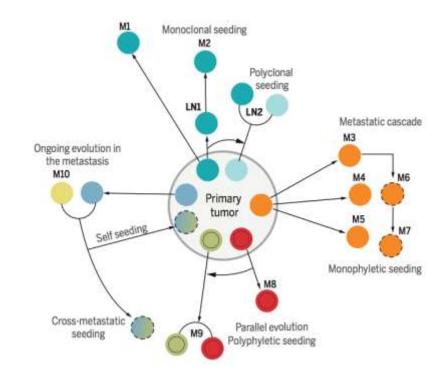
Hot topic


Substantiation of the Paradigm


- Translational research
- Improved imaging methods
- Improved systemic therapies to treat additional microscopic sites (contradictory?)
- Advancements in surgery (e.g. laparoscopic, robotic)
- Advancements in radiotherapy (e.g. SBRT)

But question remains: Fact or Fantasy?

Example in PCa: Biologic Correlate


- Complex (and various) seeding patterns
- Mets can evolve capacity to seed subsequent Mets: rapid succession, little intervening evolution

Potential(s): Prevent/Delay CRPC emergence? Cure?

OM State: Clinical arguments (aka evidence)

- Subset of patients with M1 disease do well
- Non-randomized experience(s)
- Randomized evidence
- Refining definitions:
 - synchronous vs metachronous
 - de novo vs OM recurrence vs OM progression
- Recent trials

Models simpler that reality: Complexity imported into the clinics

Observational & Obstinate-ional Evidence

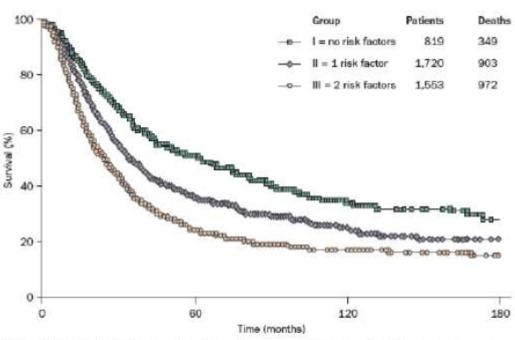
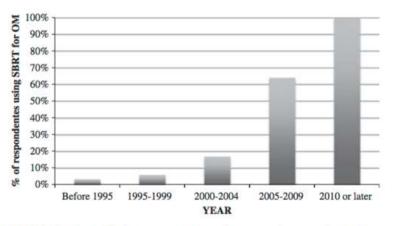
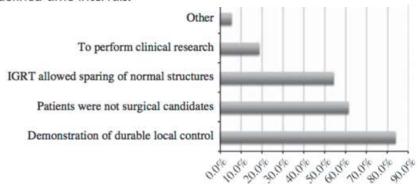
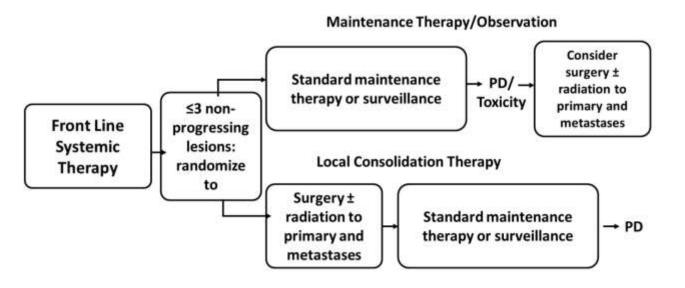




Figure 1 | Survival of patients undergoing pulmonary resection of metastatic tumors. Each curve represents the survival of patients with an increasing number of risk factors for recurrence as determined by a retrospective review of the data. These categories are: group I, a single resectable metastasis with a disease-free interval from primary tumor to metastasis of ≥36 months; group II, multiple metastases or a disease-free interval <36 months; group III, multiple metastases and a disease-free interval <36 months. The size, number and tumor type are risk factors for recurrence. Permission obtained from Elsevier © Pastorino, U. et al. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).


FIGURE 1. Cumulative percentage of respondents using stereotactic body radiotherapy (SBRT) for oligometastases during the defined time intervals.

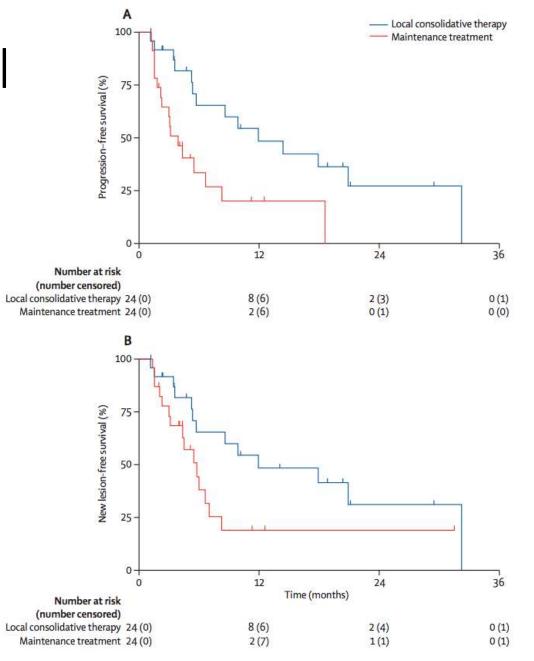
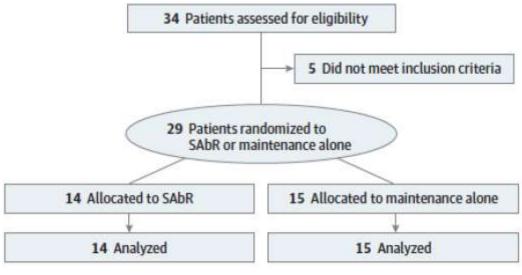
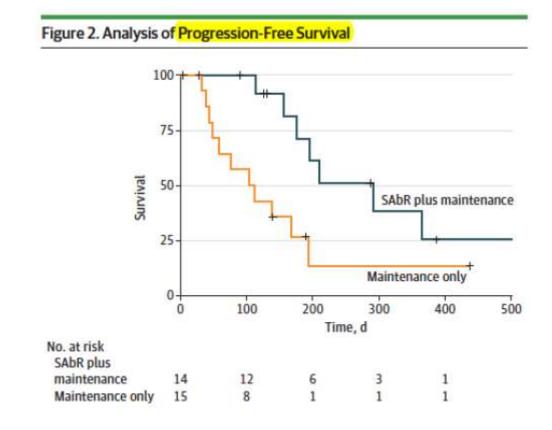


FIGURE 2. Reasons for adopting stereotactic body radiotherapy (SBRT) to treat oligometastases. IGRT indicates image-guided radiation therapy.

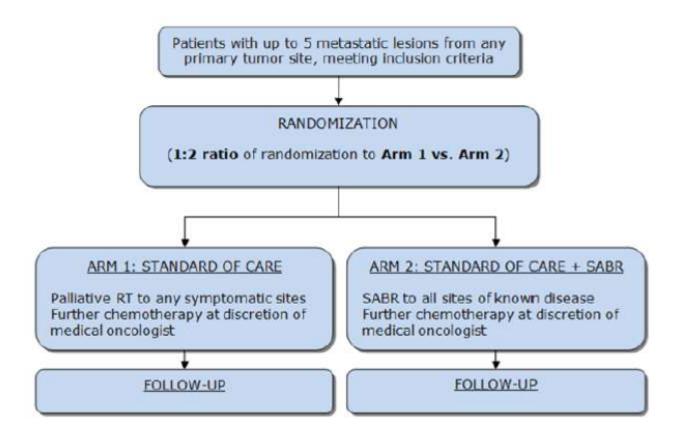
Gomez's (MDACC) Trial

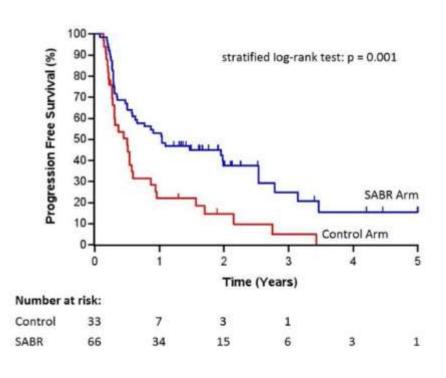


Ph 2 RCT: UT Southwestern

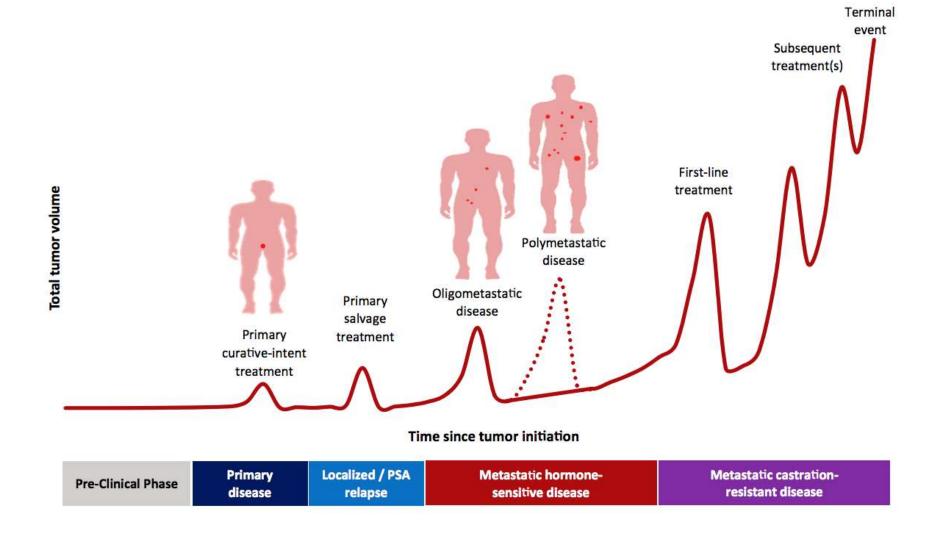

JAMA Oncology | Original Investigation

Consolidative Radiotherapy for Limited Metastatic Non-Small-Cell Lung Cancer A Phase 2 Randomized Clinical Trial


Puneeth Iyengar, MD, PhD; Zabi Wardak, MD; David E. Gerber, MD; Vasu Tumati, MD; Chul Ahn, PhD; Randall S. Hughes, MD; Jonathan E. Dowell, MD; Naga Cheedella, MD; Lucien Nedzi, MD; Kenneth D. Westover, MD, PhD; Suprabha Pulipparacharuvil, PhD; Hak Choy, MD; Robert D. Timmerman, MD



Phase 2 RCT: SABR-COMET



Increased AEs G2-5; No differences in OS, QoL or use of systemic agents

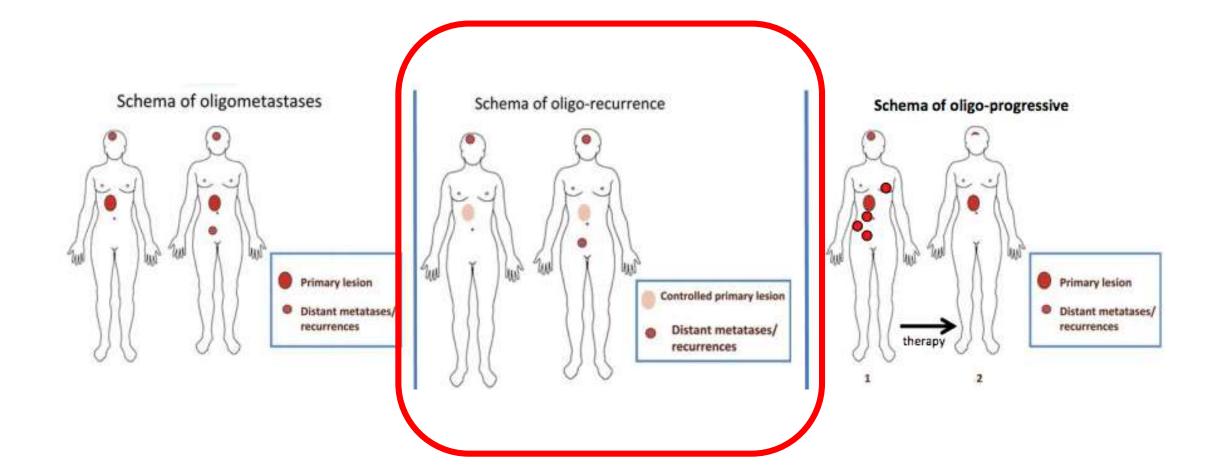


Context: Natural History of PCa

Definitions

Others:

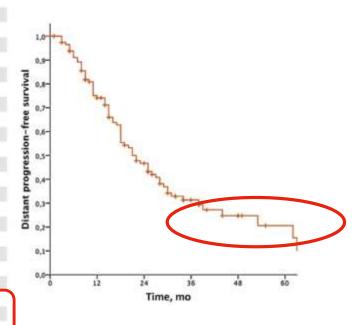
- Oligo-recurrence: systemic, regional
- Oligo-metastasis: synchronous, metachronous


Different disease states with distinct biology/prognosis

Presentation Schema

- Oligometastatic (OM) State in Oncology
 - Overarching hypothesis
 - Definitions
 - Evidence of existence and treatment benefit
- OM State in PCa
 - Evidence supporting existence
 - Treatment results
- Final thoughts

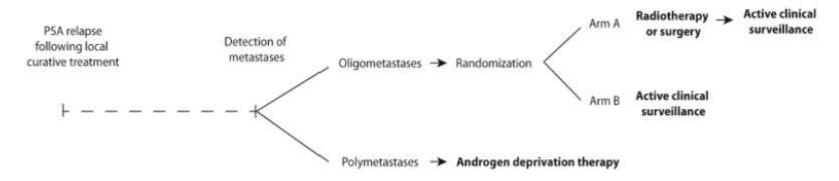
2 (less uncommon) scenarios



OM in PCa: Does exist?

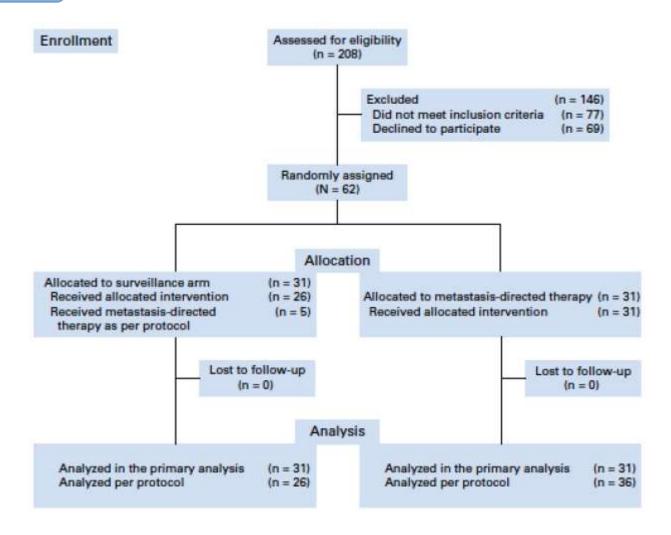
Table 1 - Patient characteristics

Characteristics	All patients (n = 119
Age at PCa diagnosis, yr	
Median (IQR)	61 (56-65)
Follow-up from PCa diagnosis, yr	
Median (IQR)	7.2 (5.0-9.3)
Primary therapy, n (%)	1.50
Radical prostatectomy alone	21 (17.6)
Radical prostatectomy with postoperative RT	37 (31.1)
Radical prostatectomy with postoperative RT and ADT	31 (26.1)
Radiotherapy and ADT	22 (18.5)
Radiotherapy alone	8 (6.7)
PSA at initial diagnosis, ng/ml	
Mean (range)	18.1 (1.3-180)
Median (IQR)	10.7 (6.8-19)
Unknown	9
EAU prognostic grouping at initial diagnosis, n (%	1)
Low	5 (4.2)
Intermediate	30 (25.2)
High	51 (42.9)
Very high	30 (25.2)
Unknown	3 (2.5)
Interval from diagnosis to metastases, yr	
Mean (range)	5.0 (0.2-16.8)
Median (IQR)	4.7 (2.7-6.6)
PSA level at first documented metastases, ng/ml	
Mean (range)	9.6 (0.1-116.7)
Median (IQR)	4.0 (1.6-8.8)
Unknown	1
PSA DT at first documented metastases, mo	
Mean (range)	5.6 (1.0-30.0)
Median (IQR)	3.9 (2.9-6.9)
Unknown	36

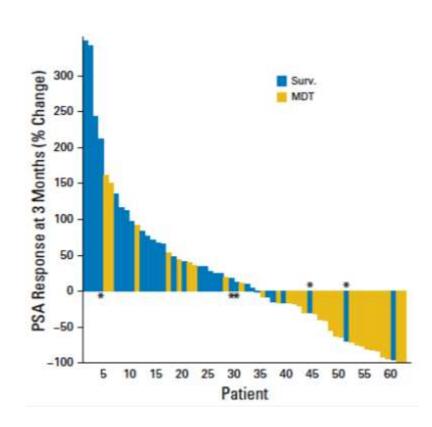

No. of lesions at diagnosis of metastases, n (%)		
One metastasis	86 (72.3)	
Two metastases	22 (18.5)	
Three metastases	11 (9.2)	
Primary site of metastases, n (%)		
Lymph nodes	72 (60)	
Pelvic	53 (45)	
Obturator	12 (10)	
Internal iliac	9 (8)	
External iliac	17 (14)	
Presacral	2(2)	
Common iliac	6 (5)	
Combination of nodal sites	7 (6)	
Extrapelvic	12 (10)	
Both	7 (6)	
Bones, n (%)	43 (36)	
Axial	22 (18)	
Appendicular	17 (14)	
Both	4(3)	
Viscera, n (%)	27.00	
Liver	1(1)	
Lung	1(1)	
Node and/or bone and/or viscera, n [%]	2 (2)	
Imaging modality at recurrence, n (%)		
Choline PET-CT	92 (77)	
FDG PET-CT	24 (20)	
MRI	3 (3)	
Adjuvant ADT, n (%)	25418.240	
No	59 (50)	
Yes	60 (50)	
Duration of ADT, mo, median (range)	2 mo (1-8 mo)	

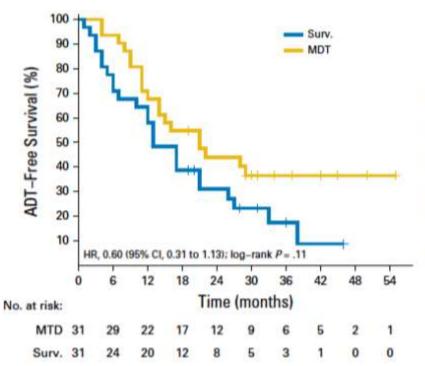
First study in PCa: STOMP Trial

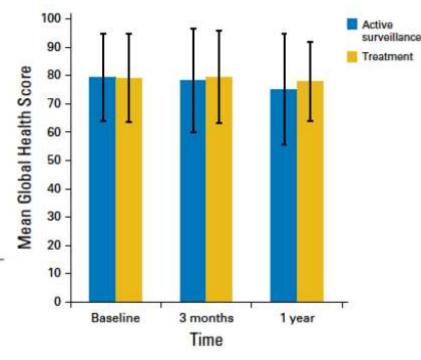
Surveillance or metastasis-directed Therapy for OligoMetastatic Prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial


Karel Decaestecker¹, Gert De Meerleer², Filip Ameye³, Valerie Fonteyne², Bieke Lambert⁴, Steven Joniau⁵, Louke Delrue⁶, Ignace Billiet⁷, Wirn Duthoy⁸, Sarah Junius⁹, Wouter Huysse⁶, Nicolaas Lumen¹ and Piet Ost^{2*}

Reasons to start ADT: local progression, symptomatic progression or polymetastatic progression


STOMP Trial

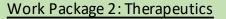




Characteristic	Surveillance (n = 31)	Metastasis- Directed Therapy (n = 31)
Age at PCa diagnosis, years	2001-2-1002	
Mean (range)	63.3 (47-79)	60.8 (43-75)
Median (IQR)	64.0 (58-69)	62 (57-66)
PSA at PCa diagnosis, ng/mL	04.0 (00 00)	02 (07 00)
Mean (range)	12.1 (2.5-36.2)	22.0 (3.5-114.0)
Median (IQR)	10.5 (7.3-15.3)	14.4 (8.6-27.3)
Gleason score	10.0 (7.0-10.0)	14.4 (0.0-27.5)
≤6	10 (32.3)	4 (12.9)
7	11 (32.3)	17 (54.8)
2 8	10 (32.3)	10 (32.3)
	10 (32.3)	10 (32.3)
Primary tumor classification	4 (40.0)	0.40.51
p/c T1	4 (12.9)	2 (6.5)
p/c T2	13 (41.9)	9 (29.0)
p/c T3 or T4	14 (45.2)	20 (64.5)
Nodal status at PCa diagnosis	12/10/200	27 02520
pNx/cN0	5 (16.1)	2 (6.5)
pNO	24 (77.4)	25 (80.6)
pN1	2 (6.5)	4 (12.9)
Type of treatment at PCa diagnosis		
RP	5 (16.1)	2 (6.5)
RT	8 (25.8)	7 (22.6)
RP and RT	18 (58.1)	22 (70.9)
ADT at PCa diagnosis		
No	16 (51.6)	19 (61.3)
Yes	15 (48.4)	12 (38.7)
Time between PCa diagnosis and inclusion, years.		
Mean (range)	6.3 (0.5-22.9)	5.9 (0.6-14.2)
Median (IQR)	4.9 (3.3-8.0)	5.3 (3.5-8.3)
PSA at inclusion, ng/mL		
Mean (range)	6.9 (0.3-31.0)	9 (0.7-44.5)
Median (IQR)	3.8 (0.8-9.6)	5.3 (2.8-12)
PSA-DT at inclusion		
≤ 3 months	10 (32.3)	10 (32.3)
> 3 months	21 (67.7)	21 (67.7)
No. of metastases		
1	9 (29.0)	18 (58.1)
2	10 (32.3)	6 (19.3)
3	12 (38.7)	7 (22.6)
Location of metastases		
Nodal	17 (54.8)	17 (54.8)
N1	8 (25.8)	13 (41.9)
M1a	5 (16.2)	4 (12.9)
Combination of N1 and M1a	4 (12.9)	0 (0.0)
Non-nodal	14 (45.2)	14 (45.2)
M1b	11 (35.5)	13 (41.9)
Combination of N1/M1a and M1b	3 (9.7)	0 (0.0)
M1c	0 (0.0)	1 (3.3)

Randomized Phase 2: SBRT vs Observation

PSMA MRgRT: Schema


Clinical Problem

Recurrent PCa post Surgery + Radiotherapy No evidence of disease In conventional studies (BS and CT)

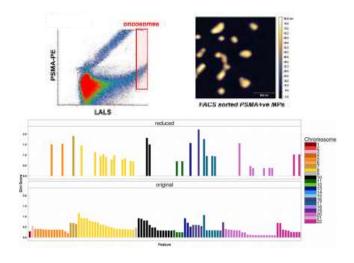
Work Package 1: Diagnostics

[18F]DCFPyL PET/MRI

Unveil and characterize new early molecularly-defined oligometastatic state

MRgRT SABR

Discover new curative-intent treatment
Unprecedented precision and accuracy



Work Package 3: Translational

PSA² liquid biopsy Tissue/Fluids samples

Response monitoring and outcome prediction.

Seed translational studies.

PSMA MRgRT: Design

Primary endpoint:

NED (biochemical CR [PSA < 0.05])

H0: RR<5%

Ha: RR>20%

2-stage design, **n=37**

Secondary endpoints:

SABR toxicities

Qualitative and quantitative imaging metrics of PET/MR

Correlates of SABR treatment outcomes and PSA2 kinetics.

¹⁸F-DCFPyL PET/MRI molecular response post SABR

Comparative performance between ¹⁸F-DCFPyL PET/MR and PET/CT

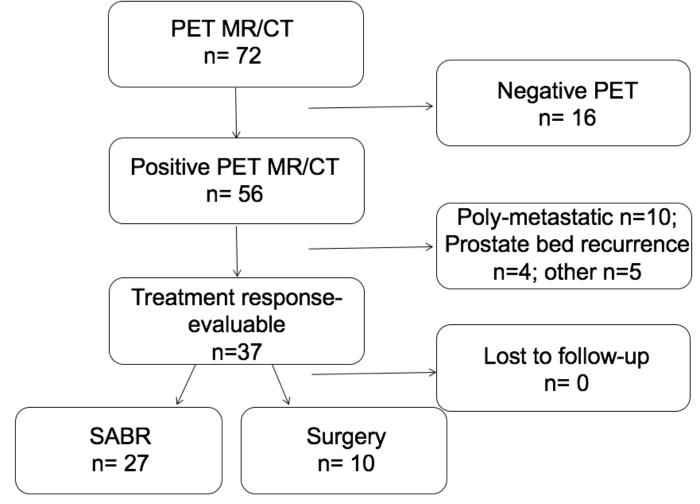
Post maximal local therapy (RadP + RT)

- Rising PSA (>0.4ng/ml and <3ng/ml)
 - Negative conventional staging
 - No previous use of salvage ADT

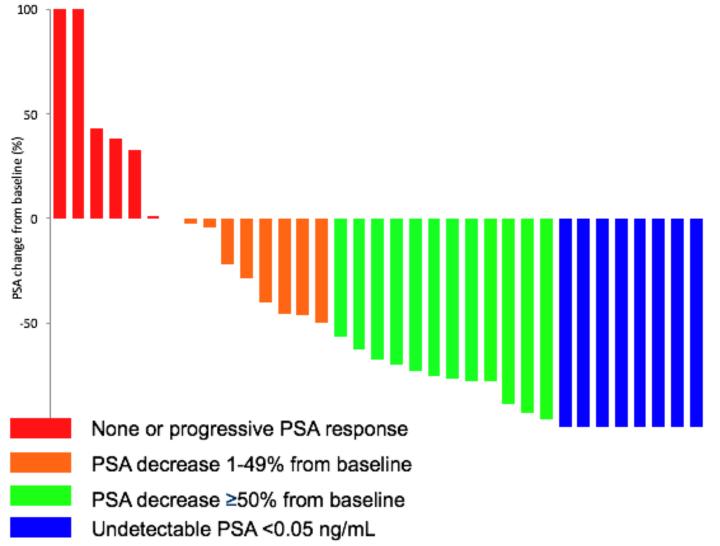
[18F]DCFPyL PET-MR/CT

Study Intervention- Diagnostic

SABR

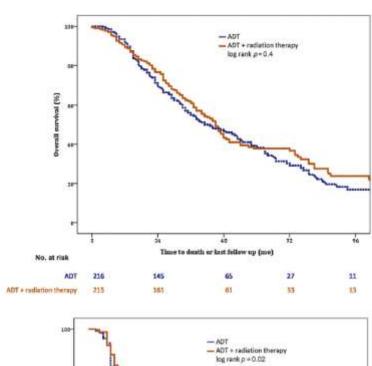

or

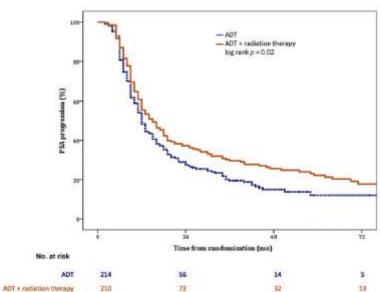
Surgery

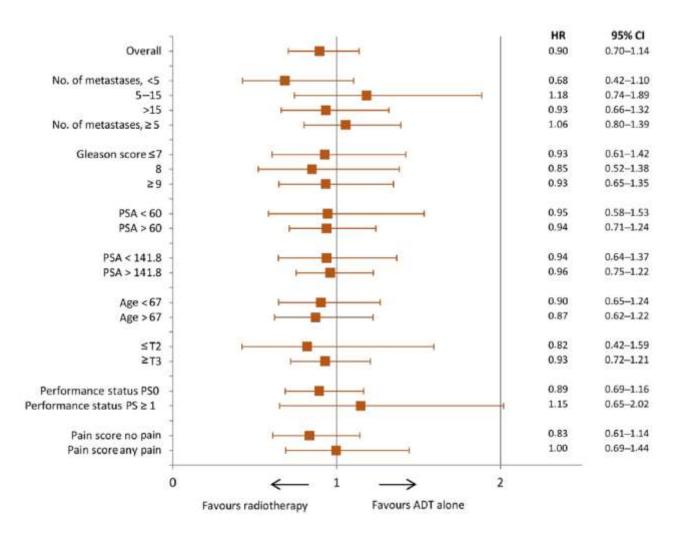

Study Intervention-Therapeutic

PSMA MRgRT: Consort

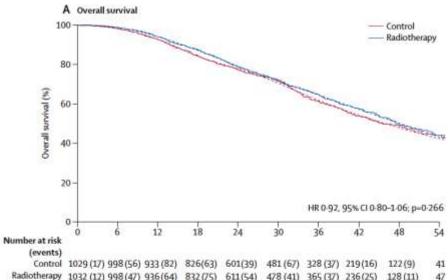
PSMA MRgRT: Response @ 3 (n=6) or 6mo (n=29)

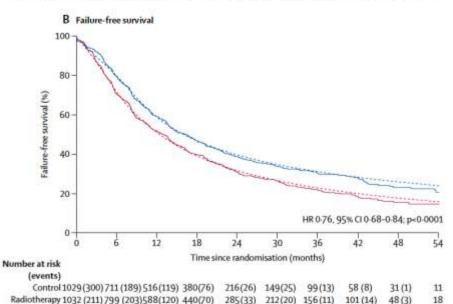


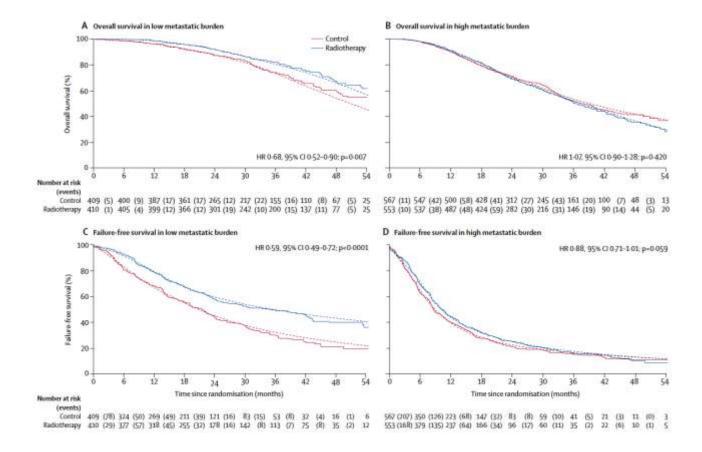



2 (less uncommon) scenarios

HORRAD

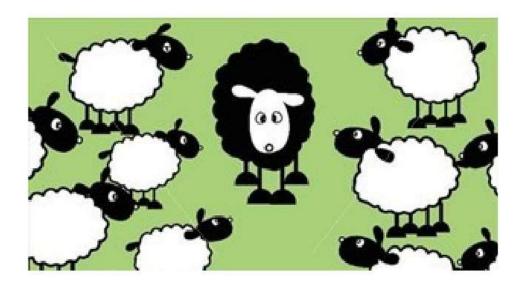





Boevé et al. Eur Urol 2019

STAMPEDE (H)

Radiotherapy 1032 (12) 998 (47) 936 (64) 832 (75) 611 (54) 478 (41) 365 (37) 236 (25) 128 (11)


Let's see STAMPEDE M...

Parker et al. NEJM 2018

Fundamental elements of a crime

- Action or omission
- Defined by the law ("criminality")
- Unlawful
- *Dolus* (intent or overt negligence)
- Culpability

Fundamental elements of a crime

- Action or omission
- Defined by the law ("criminality")
- Unlawful
- Dolus (intent or overt negligence)
- Culpability

Discussion

This randomised comparison of more than 2000 patients with metastatic prostate cancer showed that local radiotherapy to the prostate did not improve overall survival for unselected patients. However, a prespecified analysis showed that prostate radiotherapy did improve overall survival (from 73% to 81% at 3 years) in those with a low metastatic burden, which represented 40% of the comparison population.

Fundamental elements of a crime

- Action or omission
- Defined by the law ("criminality")
- Unlawful
- *Dolus* (intent or overt negligence)
- Culpability

Discussion

This randomised comparison of more than 2000 patients with metastatic prostate cancer showed that local radiotherapy to the prostate did not improve overall survival for unselected patients. However, a prespecified analysis showed that prostate radiotherapy did improve overall survival (from 73% to 81% at 3 years) in those with a low metastatic burden, which represented 40% of the comparison population.

Discussion

This randomised comparison of more than 2000 patients with metastatic prostate cancer showed that local

Only in <u>very few</u> instances can we be confident that subgroup analyses provide a better estimate of effect than the overall results of trials

#staysafe #stayconsistent

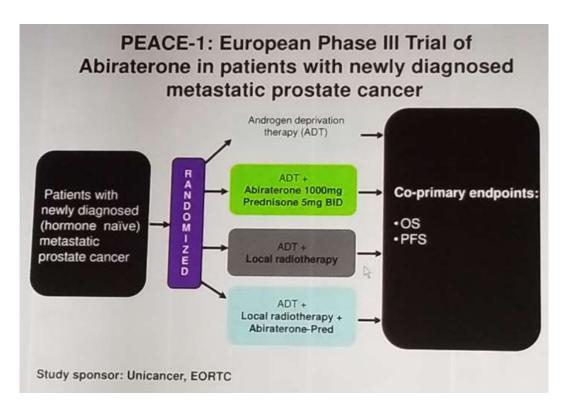
Fundam

Acti

Defi

Unlawful

- Dolus (intent or overt negligence)
- Culpability


ve overall especified d improve) in those ted 40% of

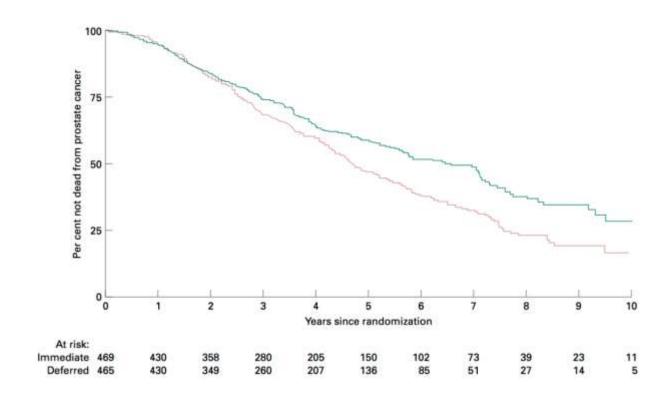
Evidence to treat? to cut?

SWOG S1802 (n=1273)

PEACE-1 (n=1168)

Presentation Schema

- Oligometastatic (OM) State in Oncology
 - Overarching hypothesis
 - Definitions
 - Evidence of existence and treatment benefit
- OM State in PCa
 - Evidence supporting existence
 - Treatment results
- Personal opinion(s)

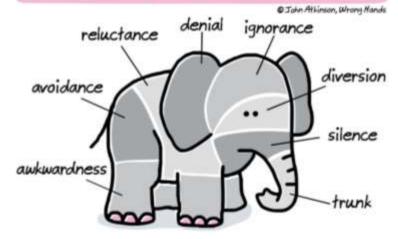


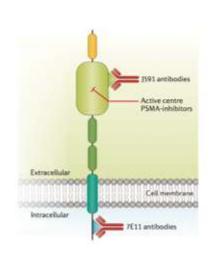
Questions remain: Why MDT in PCa?

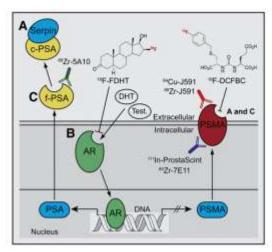
- Cure (?): alone?, combined with systemic therapy?
- Delay ADT and other systemic agents
- Improve local control (symptomatic progression)
- Decrease metastases seeding sources (PFS?)
- Improved response to AR-targeting agents (?)
- Delay emergence of mCRPC (?)
- Improve OS?

IMO: Oligorecurrent > Oligometastatic

What's Old Is New Again


Earlier treatment (when lower disease burden) = Higher response to ADT and PCSS/OS


Will Rogers: here we go again! #weloveyou

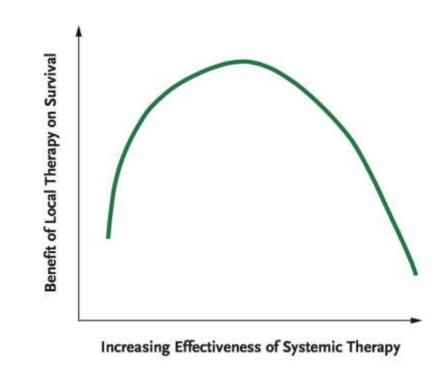


PARTS OF THE ELEPHANT IN THE ROOM

New kid in block: PSMA (Prostate-Specific Membrane Antigen)

- High ratio (1:100-1000) tumour to non-target expression
- 11p (commonly intact in PCa)
- Internalization upon binding (improved imaging and therapeutic efficacy)

All what we've discussed pertains to the pre-PSMA era


So Far...

• The lower the burden of (untreated) disease, the better the response to systemic Tx.

• But:

- Cure has not been shown
- OM state remains a working hypothesis

Further modulated (at least) by:

- Burden of disease
- Biology

Acknowledgements

UHN-PM

Padraig Warde

Robert Bristow

Peter Chung

David Jaffray

Mary Gospodarowicz

Andrew Bayley

Charles Catton

Rachel Glicksman

Doug Vines

Antonio Finelli

Neil Fleshner

Rob Hamilton

Alex Zlotta

Girish Kulkarni

Nathan Perlis

Kala Sridhar

Aaron Hansen

UHN-JDMI

Ur Metser

Rosanna Chan

Noam Tau

UHN-Techna

David Green

UHN-OCI

Brad Wouters

Rama Khokha

CHUM – Montreal

Cynthia Ménard

CPDC - Hamilton

John Valliant

Anne Goodbody

Funding:

