Germline Testing in Hereditary Kidney Cancer Syndromes

Mark W. Ball, MD

Assistant Research Physician

National Cancer Institute

No disclosures.

Objectives

- Why to perform germline testing?
- <u>**How</u> to perform germline testing?**</u>
- In whom to perform germline testing?

Kidney cancer: Multiple diseases

Hereditary Kidney Cancer

- Currently 12 known syndromes that confer a predisposition to kidney cancer
- Most series suggest 5-8% of kidney cancers are associated with a known hereditary kidney cancer syndrome.
- But genetic influence likely plays a larger role...

Kletscher J Urol. 1995;153(3 Pt 2):904-6.
 Whang J Urol. 1995;154(3):968-70; discussion 70-1.

Known Inherited Syndromes

1.	von Hippel-Lindau (VHL)	[VHL]			
2.	Hereditary Papillary Renal Cancer (HPRC)	[MET]			
3.	3. Birt-Hogg-Dube (BHD) [FLCN]				
4.	. Hereditary Leiomyomatosis and Renal Cell Carcinoma (HLRCC) [FH]				
5.	Succinate Dehydrogenase Deficiency	[SDH-B,C,D]			
6.	Microphthalmia-associated Transcription Factor RCC	[MITF]			
7.	BAP1-associated kidney cancer	[BAP1]			
8.	Tuberous Sclerosis Complex (TSC)	[TSC1,2]			
9.	Chromosome 3 Translocation	germline balanced translocation			
10.	0. Hyperparathyroid -Jaw Tumor (HJT) [CDC73]				
11.	I. Cowden Syndrome [PTEN]				
12.	Familial Renal Oncocytoma (FRO)	mitochondrial genes			

How are hereditary cases missed?

- Clinician unfamiliarity with non-renal manifestations
- Variable penetrance
- Poor family history
- Development of *de novo* mutations (~10% of hereditary patients)

Does it matter?

- Hereditary patients are treated with different paradigms.
- Identify indolent vs aggressive phenotypes
- Emphasis on organ preservation:
 - Active surveillance and partial nephrectomy
- Different pathways for systemic therapy
 - FH-deficient and SDH-deficient tumors
- Screening for the rest of family

A POPULATION-BASED FAMILIAL AGGREGATION ANALYSIS INDICATES GENETIC CONTRIBUTION IN A MAJORITY OF RENAL CELL CARCINOMAS

Tómas Gudbjartsson^{1*}, Thora J. Jónasdóttir^{2,3}, Ásgeir Thoroddsen¹, Gudmundur V. Einarsson^{1,4}, Gudrún M. Jónsdóttir², Kristleifur Kristjánsson², Sverrir Hardarson^{1,4}, Kjartan Magnússon¹, Jeffrey Gulcher^{2*}, Kári Stefánsson² and Laufey T. Ámundadóttir^{2,3}

Int. J. Cancer: 100, 476-479 (2002)

Iceland – extensive genealogy records for "11 centuries" 1,078 RCC cases Determine whether patients are more related to each other than controls 58% of all cases were found in families with 2 or more affected members 26% in families with 3 or more affected members.

RR of RCC with 1st degree relative: >2

Original Investigation

Familial Risk and Heritability of Cancer Among Twins in Nordic Countries JAMA January 5, 2016 Volume 315, Number 1

80,309 monozygotic and 123 382 same-sex dizygotic twin individuals within the population-based registers of Denmark, Finland, Norway, and Sweden. Twins were followed up a median of 32 years Table 3. Estimates of Heritability and Shared Environment for Specific Types of Cancer in the NorTwinCan Cohort^a

	Familial Risk, % (95% CI)	
	Heritability	Shared Environment
Overall cancer	33 (30-37)	0
Head and neck	9 (0-60)	26 (0-65)
Stomach	22 (0-55)	6 (0-31)
Colon	15 (0-45)	16 (0-38)
Rectum and anus	14 (0-50)	10 (0-38)
Lung	18 (0-42)	24 (7-40)
Skin		
Melanoma	58 (43-73)	0
Nonmelanoma	43 (26-59)	0
Breast	31 (11-51)	16 (0-31)
Corpus uteri	27 (11-43)	0
Ovary	39 (23-55)	0
Prostate	57 (51-63)	0
Testis	37 (0-93)	24 (0-70)
Kidney	38 (21-55)	0
Bladder, other urinary organs	30 (0-67)	0
Leukemia, other	57 (0-100)	0

Pathogenic Germline Variants in 10,389 Adult Cancers

10,000+ adult cancers in the TCGA dataset . TCGA specifically excluded known hereditary cancer syndromes

Pathogenic germline alterations found in: 6% ccRCC 9% pRCC 6% chromophobe RCC

Genome-wide association study identifies multiple risk loci for renal cell carcinoma

Ghislaine Scelo et al.#

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15724

- 13 loci have been identified that confer increased risk of RCC, OR ~1.5 in patients of European ancestry
- A Genome-Wide Association Study of Renal Cell Carcinoma among African Americans Cancer Epidemiol Biomarkers Prev; 23(1) 2014

		NCI study		
Race	RCC subtype	N _{Case} /N _{Cont}	OR (95% CI)	Р
African American				
	Clear cell	127/375	0.69 (0.52-0.93)	0.01
	Other	127/375	1.00 (0.75-1.34)	0.99
			$P_{\rm hom}=0.03$	
European ancestry				
	Clear cell	544/712	0.79 (0.57-1.09)	0.15
	Other	268/712	1.00 (0.68-1.48)	0.98
			$P_{\text{hom}} = 0.18$	

Increasing emphasis in multiple malignancies

Recent NCCN guideline changes

- Prostate: germline testing <u>recommended</u> for all high-risk patients
- Pancreatic: germline testing <u>recommended</u> for <u>all patients</u>
- Breast: strong consider germline testing

Objectives

- <u>Why</u> to perform germline testing?
 - Syndromes are not rare
 - Can affect management
- **How** to test perform germline testing?
- In whom to perform germline testing?

How to test

How many genes? Single gene confirm clinical diagnosis or known family variant lowest cost 15-25 gene renal panels: established germline genes. no clear syndromic features, but suspicious family or person history Expanded panels included non-renal cancer susceptibility genes decreased signal:noise, may find more VUS \rightarrow increased uncertainty

Sanger sequencing

Genetic Testing

Test Information Sheet

OncoGeneDx: Renal Cancer Panel

Panel Gene List: BAP1, EPCAM*, FH, FLCN, MET, MITF*, MLH1, MSH2, MSH6, PMS2, PTEN, SDHB, SDHC, SDHD, TP53, TSC1, TSC2, VHL

*Testing includes sequencing and deletion/duplication analysis for all genes except EPCAM (del/dup only) and MITF (only c.952G>A (p.Glu318Lys) will be analyzed and reported).

NVITAE

01361	O 01361 Invitae Renal/Urinary Tract Cancers Panel		24	BAP1, CDC73, CDKN1C, DICER1, DIS3L2, EPCAM, FH, FLCN, GPC3, MET, MLH1, MSH2, MSH6, PMS2, PTEN, SDHB, SDHC, SMARCA4, SMARCB1, TP53, TSC1, TSC2, VHL, WT1
	01361.1	Add-on preliminary-evidence genes	6	BUB1B, CEP57, MITF, PALB2, SDHA, SDHD

Testing considerations

- Genetic counselors: high demand, limited supply may face wait times
- Cost in U.S., variable insurance coverage. Need to establish risk 3 generation pedigrees
- Implications
 - Insurability health and life insurance
 - Screening for family members
 - Incidental findings

Objectives

- Why to perform germline testing?
- How to perform germline testing?
 - In coordination with a genetic counselor
 - Renal panel with known germline-altered genes for most suspected patients

In whom to perform germline testing?

Hereditary Kidney Cancer

- When to evaluate:
 - Feature of genetic syndrome
 - Early onset (before age 46)
 - Family history, especially first-degree relative
 - Bilateral and/or multifocal
 - Advanced disease
 - Rare histology

Center for Cancer Research

- VHL is a hereditary, multi-organ cancer syndrome
- Germline alterations of VHL
- AD inheritance
- 1:36,000

21

CNS Hemangioblastomas

🥑 @NCIResearchCtr

22

Retinal Angiomas

Endolymphatic Sac Tumors (ELST)

Pheochromocytomas/Paragangliomas

NATIONAL CANCER INSTITUTE Center for Cancer Research

🕑 @NCIResearchCtr 25

Pancreatic Cyst Pancreatic Neuroendocrine Tumors

Kidney cysts Renal cell carcinoma

EYES Retinal angiomata EARS Endolymphatic sac tumors

> • SPINAL CORD Spinal cord hemangioblastoma

ADRENAL GLANDS Pheochromocytoma

DANCIA 1=0.5 Multiple pancreatic cyst Pancreatic neuroendocrine tumors

KIDNEYS Renal hemangioblastoma Renal cell carcinoma

FEMALE GENITAL Bilateral papillary cystadenomas of the broad ligament

MALE GENITALIA Bilateral papillary cystadenoma of the epididymis Epididymal Cysts

Cystadenomas of the broad ligament Cystadenomas of the epididymis

Hereditary Leiomyomatosis and Renal Cell Carcinoma

Birt Hogg Dubé

Kidney + other malignancies

- VHL- pancreas, CNS
- MITF melanoma
- BAP1 melanoma, mesothelioma
- Cowden's/PTEN- breast, endometrial, thyroid, colorectal, melanoma

Defining Early-Onset Kidney Cancer: Implications for Germline and Somatic Mutation Testing and Clinical Management

NATIONAL CANCER INSTITUTE Center for Cancer Research Shuch B, JCO 2014

Enriched population screening

207 patients referred with no clinical or genetic diagnosis of heredity syndrome

Ball MW et al AUA 2019

Results

Overall positive results (17%)

- Early onset (19.5%)
- FRC (35.2%)
- BMF (21%)

15% has VUS

Ball MW et al AUA 2019

Advanced disease

267 unscreened patients presenting with stage III or IV RCC at MSK

patients (16.1%): RCC-associated mutations in 14 (5.5%) and other cancer-associated mutations in 27 (10.6%). Renal cell carcinoma (RCC)-associated germline mutations include mutations in BAP1, FH, MET, SDHA, SDHB, and VHL.

Carlo et al, JAMA Oncology

Objectives

- Why to perform germline testing?
- <u>How</u> to perform germline testing?
 <u>In whom</u> to perform germline testing?
 - Feature of genetic syndrome
 - Early onset (before age 46)
 - Family history, especially first-degree relative
 - Bilateral and/or multifocal
 - Advanced disease
 - Rare histology

Conclusions

- Clinicians treating kidney cancer will see hereditary syndrome patients (whether you know it or not)
- Early onset, bilateral/multifocal disease, family history should be triggers for genetic counseling.
- Also consider: rare histology, other malignancies

