

Biomarkers in mRCC: too hot, too cold, or just right?

Aly-Khan A. Lalani, BSc (Hons) MD FRCPC

Assistant Professor, McMaster University Medical Oncologist, Juravinski Cancer Centre Visiting Scientist, Dana-Farber Cancer Institute *Canadian Kidney Cancer Forum, April 12th 2019*

Disclosures

- Honoraria/consulting:
 - BMS, Eisai, Ipsen, Janssen, Merck, Pfizer, Roche, TerSera

Timeline circa 2016

Pretreated

Synergistic strategies with immunotherapy

Combination strategies with IO backbone

	I-O + TKI			I-O + I-O	I-O + VEGF mAb	PD-1/F monoth	TKI monotherapy	
TRIAL	Pembrolizumab + Axitinib ¹	Pembrolizumab + Lenvatinib ²	Avelumab + Axitinib ³	Nivolumab + Ipilimumab ^{4,5}	Atezolizumab + Bevacizumab ⁶	Pembrolizumab ⁷	Atezolizumab ⁸	Sunitinib ⁶
Phase	Ш	IB/II	III	Ш	III	II	II	III
Ν	432	30	442	425 (Int/Poor risk)	454	110	103	461
Prior therapy?	No	Yes	No	No	No	No	No	No
ORR	59% (OS HR 0.53)	63%	51%	42% (OS HR 0.66)	37%	38%	25%	33%

¹Rini et al. *N Engl J Med* 2019; ²NCT02501096, Lee et al. ESMO 2017; ³Motzer et al. *N Engl J Med* 2019; ^{4,5}NCT02231749 Escudier et al. ESMO 2017, Motzer et al. SITC 2017; ⁶NCT01984242 Motzer et al. ASCO GU 2018; ⁷NCT02853344 McDermott et al, ASCO 2018; ⁸NCT01984242 Atkins et al, ASCO 2017.

SOME UNANSWERED CLINICAL QUESTIONS...

Overall Survival: by IMDC Risk

SUN

Intermediate/poor risk

Favorable risk

Investigator-Assessed Response per RECIST v1.1

• Among ITT patients, 185 (34%) versus 114 (21%) achieved ≥50% best tumor burden reduction with NIVO+IPI versus SUN

1. Rini BI, et al. Poster presentation at the European Society for Medical Oncology (ESMO) Congress; October 19–23, 2018; Munich, Germany. Poster 875P.

Data cutoff date: Aug 24, 2018.

Overall Survival in Key Subgroups

	Subgroup	No. of Events/ No. of Patients	Haza	rd Ratio (95%	CI)
	Overall	156/861			0.53 (0.38–0.74)
	Age		_		
	<65 yrs	91/538			0.47 (0.30–0.73)
	_≥65 yrs	65/323			0.59 (0.36–0.97)
	Sex				
	Male	108/628			0.54 (0.37–0.80)
	Female	48/233			0.45 (0.25–0.83)
	Region of enrollment				
	North America	31/207		_	0.69 (0.34–1.41)
	Western Europe	31/210			0.46 (0.22–0.97)
	Rest of world	94/444			0.51 (0.33–0.77)
	IMDC risk category				
	Favorable	17/269			0.64 (0.24–1.68)
	Intermediate	93/484			0.53 (0.35–0.82)
	Poor	46/108			0.43 (0.23–0.81)
	Karnofsky performance sco	ore			U. 97 57
	90 or 100	88/688			0.53 (0.35–0.82)
	70 or 80	67/172			0.49 (0.30–0.81)
	PD-L1 CPS				
	<1	54/325			0.59 (0.34–1.03)
	≥1	90/497			0.54 (0.35–0.84)
	No. of metastatic organs		_		
	1	21/210 —			0.20 (0.07–0.57)
	≥2	134/646			0.60 (0.42–0.85)
		01	0.5 1	2	
		0.1	0.5		
			Pembro-Axi	Sunitinib	
			Pottor	Pottor	
00	10		Delle	Delle	

Data cutoff date: Aug 24, 2018.

IMMOTION150 (PHASE II) TRIAL DESIGN

• After progression on atezolizumab or sunitinib, crossover to atezolizumab + bevacizumab was allowed

CROSSOVER PROGRESSION-FREE SURVIVAL

ORR: 24%

ADDITION OF BEVACIZUMAB TO ATEZOLIZUMAB IN 1L WAS ASSOCIATED WITH IMPROVED BENEFIT IN T-EFFECTOR^{HIGH} MYELOID INFLAMMATION^{HIGH} SUBGROUP

PFS measured by independent review facility. T-effector gene signature: CD8A, EOMES, PRF1, IFNG, CD274. High, ≥ median expression; low, < median expression. McDermott, AACR 2017.

CAN BIOMARKERS HELP?

Current approach to biomarkers in mRCC

In situ markers

- Protein expression by IHC (e.g. PD-L1)
- Challenges

Genomics/Transcriptomics:

- Overview
- Integrative genomics
- Immune signatures

Blood-based biomarkers:

- Neutrophils/Lymphocytes Ratio (NLR)
- Metabolomics

Ongoing and future efforts

Current approach to biomarkers in mRCC

In situ markers

- Protein expression by IHC (e.g. PD-L1)
- Challenges

Genomics/Transcriptomics:

- Overview
- Integrative genomics
- Immune signatures

Blood-based biomarkers:

- Neutrophils/Lymphocytes Ratio (NLR)
- Metabolomics

• Ongoing and future efforts

PD-L1 Expression by H-Score in COMPARZ Trial (n=453)

OS by PD-L1 expression in CheckMate 025

NE, not estimable

OS by tumor PD-L1 expression: IMDC intermediate/poor risk

Motzer et al SITC 2017

Cellular localization of biomarker at the protein level

PD-L1 expression in **tumor cells** or **immune cells** might have different predictive value in ccRCC patients treated with PD-1/PD-L1 blockade

Motzer et al, NEJM 2015 McDermott, et al JCO 2016

Tumor heterogeneity in ccRCC: challenge to genomic & non-genomic personalized-medicine

PD-L1 testing across mRCC trials

	Atezolizumab + Bevacizumab ¹	Avelumab + Axitinib ²	Pembrolizumab + Axitinib ³	Pembrolizumab + Levantinib ⁴	Sunitinib vs Pazopanib ⁶	Nivolumab + Ipilimumab vs Sunitnib ^{8,9}
PHASE	3	3	3	1b/2	3	3
PD-L1 IHC Antibody clone	SP 142 Ventana (rabbit clone)	SP 263 Ventana (rabbit clone)	22C3 PharmDx (mouse clone)	22C3 Agilent (mouse clone)	5H1 Medtox (mouse clone)	28-8 Dako (rabbit clone)
LOCATION: Tumor cell (TC) or Immune cell (IC)	IC	IC	TC	TC/IC	тс	TC
CUT OFF FOR POSITIVITY	≥ 1%	≥1%	CPS ≥ 1%	CPS ≥ 1%	H-score > 0	≥ 1%

¹NCT01984242, Motzer et al. ASCO-GU 2018; ²NCT02493751, Choueiri et al. ASCO 2017; ³NCT02133742, Atkins et al. ASCO GU 2018;;⁴NCT02501096, Lee et al. ESMO 2017; ⁵NCT02178722, Lara et al. ASCO 2017; ⁶Choueiri et al. Clin Cancer Res 2015;21(5):1071-7; ⁷Motzer RJ et al. N Engl J Med 2015;373:1803–13; ^{8,9}NCT02231749 Escudier et al. ESMO 2017, Motzer et al. SITC 2017

Concordance of PD-L1 assays can vary!

JAMA Oncology | Original Investigation

A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non-Small Cell Lung Cancer

David L. Rimm, MD, PhD; Gang Han, PhD; Janis M. Taube, MD; Eunhee S. Yi, MD; Julia A. Bridge, MD; Douglas B. Flieder, MD; Robert Homer, MD, PhD; William W. West, MD; Hong Wu, MD; Anja C. Roden, MD; Junya Fujimoto, MD; Hui Yu, MD; Robert Anders, MD; Ashley Kowalewski, MS; Christopher Rivard, PhD; Jamaal Rehman, MD; Cory Batenchuk, PhD; Virginia Burns, PhD; Fred R. Hirsch, MD, PhD; Ignacio I. Wistuba, MD, PhD

www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 61), pp: 103428-103436

Research Paper

Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression

Aly-Khan A. Lalani¹, Kathryn P. Gray², Laurence Albiges³, Marcella Callea⁴, Jean-Christophe Pignon⁵, Soumitro Pal⁶, Mamta Gupta⁷, Rupal S. Bhatt⁸, David F. McDermott⁸, Michael B. Atkins⁹, G.F. Vande Woude¹⁰, Lauren C. Harshman¹, Toni K. Choueiri^{1,*} and Sabina Signoretti^{5,*}

¹Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

²Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA

³Institut Goustave Roussy, Villejuif, France

⁴Department of Pathology, Ospedale San Raffaele, Milan, Italy

⁵Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA

⁶Division of Nephrology, Boston Children's Hospital, Boston, MA, USA

⁷Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA

⁸Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA

⁹Georgetown Lombardi Comprehensive Cancer Center, Washington D.C., USA

¹⁰Van Andel Research Institute, Grand Rapids, MA, USA

Co-senior authors contributed equally to this work

Methods

- c-Met expression: evaluated by IHC (anti-Met monoclonal antibody; MET4 Ab, VARI) and calculated by a combined score (CS, 0-300) as:*intensity of c-Met staining (0-3) x % of positive cells (0-100)*
- PD-L1 expression: previously assessed by IHC¹, and PD-L1+ was defined as PD-L1> 0% positive cells or PD-L1- otherwise
- c-Met expression (average c-Met CS) between paired primary and metastatic samples were compared using Wilcoxon signed-rank test. Associations of c-Met expression with PD-L1 expression (+/-), Fuhrman nuclear grade (FNG), T-stage, were assessed with Wilcoxon rank-sum tests

Patients, n (%)
29 (64) 16 (36)
58 (49-62)
3 (7) 14 (31) 21 (47) 4 (9) 3 (7)
12 (27) 13 (29) 20 (44)
32 (71) 13 (29)
35 (78) 6 (13) 4 (9)

c-MET expression is higher in metastatic sites than in primary tumors

		Primary site	Metastatic site	p-value*
Average c-MET combined score	Median (IQR)	<mark>28</mark> (10,55)	<mark>55</mark> (30,83)	0.0003
Highest c-MET combined score	Median (IQR)	30 (20,80)	60 (30,130)	0.02

*based on Wilcoxon signed rank to test p-value for continuous c-MET

Representative images of a primary ccRCC (A) and its corresponding metastasis (B) immunostained for Met. A, weak (1+) membranous staining is observed in a subset of tumor cells. B, intense (3+) membranous staining is observed in a large fraction of tumor cells. Insets show higher magnifications of the selected areas. Scale bars: 50 µm.

c-MET expression was numerically-greater in PD-L1+ vs. PD-L1- tumors

PD-L1 staining

LEFT: Distributions of c-Met expression according to PD-L1 staining positivity (PD-L1+, > 0% positive cells vs. PD-L1-, = 0% positive cells) based on tumor sample sites.

RIGHT: Representative images of 2 ccRCC metastases immunostained for PD-L1 (A,C) and Met (B,D).

PD-L1 positive metastasis (A) with intense (3+) membranous Met staining (B). PD-L1 negative metastasis (C) with weak (1+) membranous Met staining (D).

Conclusions

- In our cohort of metastatic ccRCC patients, c-Met expression is higher in metastatic sites compared to paired primary samples
- Higher c-Met expression in metastases compared to paired primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastatic sites
- Although the observation of higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination trials
 - Evaluating this in METEOR and CABOSUN trials

Considerations of PD-L1 expression and interpretation

Variable	Potential Impact on PD-L1 Expression
Age of tumor tissue specimen	Decrease with older sections; epitope degradation/masking
Primary vs Metastases	Discordant expression between primary and metastases
Low vs. high-grade areas	Higher expression in higher grade tumors
Method of collection	Excisional/resection samples have higher number of tumor cells – may impact potential for detection of PD-L1+ cells
Type of antibody used	Mouse clone 5H1, Rabbit clone 28-8, Roche mAb
Cutoffs /reporting methods	1%, 5%, 50%, H-score
Localization	Tumor membrane, immune cells or both
The Reader	Pathologist (with inter-variability), automated system
The Therapy	Single agent (nivo) vs. combination (nivo+ipi, nivo+VEGF inh)or another non-immunotherapy drug

Current approach to biomarkers in mRCC

In situ markers

- Protein expression by IHC (e.g. PD-L1)
- Challenges

Genomics/Transcriptomics:

- Overview
- Integrative genomics
- Immune signatures

• Blood-based biomarkers:

- Neutrophils/Lymphocytes Ratio (NLR)
- Metabolomics

• Ongoing and future efforts

Framework for genomic correlates of response to ICB

Genomic correlates of response and resistance

Primary location	Response category	Defining characteristics or examples
T cell	Intratumoral infiltration ^{85,115,135-137,139}	Transcriptional signatures of cytotoxic lymphocytes infiltrating the tumor core
	Enhanced effector function52,134,141	Increased expression of PRF1, GZMA/B, CD8A, and IFNG
	Increased clonality ^{14,144,41}	Ranging from 0 to 1, with 1 indicating a monoclonal population
	Greater stemness ^{147,150}	Express chemokine receptor CXCR5 and transcription factor TCF7; lack TIM-3/CD39
	Reduced exhaustion ^{147,150}	Express co-inhibitory receptor TIM-3 and ectonucleotidase CD39; lack CXCR5/TCF7
Tumor cell (response mechanisms)	Tumor antigens ^{31,32,34-40,54,57,65,67}	Neoantigens, viral antigens
	Increased tumor mutation burden9,37,48	Mismatch repair deficiency
	Immunogenic alterations ¹⁵⁹	Inactivating mutations in SERPINB3 and SERPINB4
	Mutational signatures ^{39,53,108}	Smoking, ultraviolet light, alkylating agent therapy, APOBEC
	Genomic upregulation of PD-L1 (refs. ^{50,92-94,97-100})	PDL1 amplification and loss of CDK4, SPOP, and CMTM4 and CMTM6
	Chromatin modifier loss ^{152,154,157,158}	Inactivating mutations in PBRM1, ARID1A, and SMARCA4
fumor cell (resistance mechanisms)	Tumor antigens ⁶⁸	Cancer/testis antigens similar to self and less immunogenic
	Deficient antigen presentation ^{37,53}	Inactivating mutations in B2M, HLA, JAK/STAT, and IFN- γ response genes
	Oncogenic pathways ^{45,113-115,117,118,124,125,129,130,133}	Inactivating STK11 and PTEN mutations, WNT/ β -catenin, EGFR and KRAS mutations
	Immune evasion alterations ¹⁴¹	Increased expression of SERPINB9
	CNAs ^{144,160}	High levels of copy-number loss, chromosome arm and whole- chromosome CNAs
Microenvironment	Immunosuppressive stromal cells ^{115,123,126,140}	Transcriptional signatures of fibroblasts, endothelial cells, and TGF- $\!\beta$ signaling
	Immunosuppressive immune cells ^{136,141}	Transcriptional signatures of myeloid-derived suppressor cells and regulatory T cells

Genomic mediators of response to cancer immunotherapy?

Lawrence et al Nature 2013

Clear-cell RCC is distinguished by **relatively low mutational burdens**, but ranks among the highest in **tumor cytolytic activity** and **T cell infiltration signatures**

Using WES in pre-ICB treatment samples to explore genomic predictors of response: discovery cohort, nivolumab clinical trial

While mutation load did not predict response, truncating mutations in *PBRM1* gene were enriched in responders

Miao et al, Science 2018

Clinical genomics and immunotherapy in ccRCC

RCC discovery clinical trial cohort (N=35) PBRM1 p < 0.01

Collaboration with the Van Allen lab

Miao et al, Science 2018

A role for SWI/SNF in cancer immunotherapy?

BAF complexes Homo sapiens, Mus musculus PBAF complexes Homo sapiens, Mus musculus

Genomics and immunotherapy meta-analysis

ARID2 truncating alterations significantly associated with response (p < 0.01)

Van Allen lab, DFCI

IMmotion150 (Phase II) Trial Design

First-Line Treatment

- IMmotion150 was designed to be hypothesis generating and inform the Phase III study IMmotion151
- Coprimary endpoints were PFS (RECIST v1.1 by IRF) in ITT patients and patients with ≥ 1% of IC expressing PD-L1
- Exploratory endpoints included interrogation of the association between outcome and TME gene signatures

McDermott, JCO 2016; McDermott, ASCO GU 2017

McDermott D, et al. IMmotion150 biomarkers: AACR 2017

Molecular Correlates of Differential Response to Atezolizumab ± Bevacizumab vs Sunitinib in mRCC

McDermott D, et al. IMmotion150 biomarkers: AACR 2017

IMmotion151: Transcriptome Map Confirms Biological Subgroups Identified in IMmotion150

MUNICH ESVO 60

Summary

- IMmotion151 validated Angiogenesis and T-effector gene signatures identified in IMmotion150
 - Atezolizumab + bevacizumab improved PFS vs sunitinib in T-effector^{High} and Angiogenesis^{Low} tumours
 - Within the sunitinib arm, patients with an Angiogenesis^{High} gene signature showed improved PFS vs the Angiogenesis^{Low} subgroup
- MSKCC favourable-risk patients are characterised by a predominant Angiogenesis^{High} gene signature
- Sarcomatoid RCC is characterised by an Angiogenesis^{Low} gene signature, a T-effector^{High} gene signature / higher PD-L1 expression and enhanced clinical benefit with atezolizumab + bevacizumab

Current approach to biomarkers in mRCC

In situ markers

- Protein expression by IHC (e.g. PD-L1)
- Challenges

Genomics/Transcriptomics:

- Overview
- Integrative genomics
- Immune signatures

Blood-based biomarkers:

- Neutrophils/Lymphocytes Ratio (NLR)
- Metabolomics
- Ongoing and future efforts

Lalani et al. Journal for ImmunoTherapy of Cancer (2018) 6:5 DOI 10.1186/s40425-018-0315-0

Journal for ImmunoTherapy of Cancer

RESEARCH ARTICLE

Open Access

Change in Neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma

Aly-Khan A. Lalani¹, Wanling Xie², Dylan J. Martini^{1,3}, John A. Steinharter¹, Craig K. Norton¹, Katherine M. Krajewski⁴, Audrey Duquette¹, Dominick Bossé¹, Joaquim Bellmunt¹, Eliezer M. Van Allen^{1,5}, Bradley A. McGregor¹, Chad J. Creighton⁶, Lauren C. Harshman¹ and Toni K. Choueiri^{1*}

- **Objective:** To investigate the utility of NLR at baseline and during therapy in metastatic RCC patients treated with PD-1/PD-L1 immunotherapy (IO)
- Methods:
 - 142 patients from Dana-Farber Cancer Institute (Boston, MA) receiving IO-based therapies were included.
 - NLR was examined at baseline and 6 (±2) weeks later.
 - Landmark analysis at 6 weeks was conducted to explore the prognostic value of relative NLR change on overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) using Cox or logistic regression models, adjusted for line of therapy, number of IMDC risk factors, histology and baseline NLR.

- Baseline NLR levels were significantly higher in the poor IMDC risk group (p < 0.001)
- Patients with Non-clear cell histology had elevated NLR compared (p=0.015)
- No significant association of baseline NLR with other patient characteristics such as age, gender, smoker status, and line of therapy (p-values >0.15)

HARVARD MEDICAL SCHOOL

Table 2 Association of NLR at baseline, at 6-weeks, and change at week 6 (±2 weeks) with treatment outcomes in multivariable Cox and Logistic regression models

	ORR (CR + PR)		PFS			OS			
	Total N/ N response	Adjusted-OR ^b	p-value	Total N/ N event	Adjusted-HR ^b	p-value	Total N/ N event	Adjusted-HR ^b	p-value
Continuous Ln(NLR) [baseline]	142/44	0.49 (0.22-1.09)	0.081	142/96	1.80 (1.14-2.86)	0.012	142/51	1.70 (0.99–2.94)	0.056
Continuous Ln(NLR) [6-weeks] ^a	134/44	0.22 (0.10-0.52)	0.001	117/72	3.61 (2.21-5.88)	< 0.001	134/46	2.51 (1.71-3.69)	<0.001
NLR-change [6-weeks] ^a									
Decrease ≥25%	28/12	1.52 (0.49-4.68)	0.112	27/13	0.55 (0.26-1.18)	< 0.001	28/6	0.33 (0.12-0.88)	0.004
No change	58/21	1.00 (reference)		53/30	1.00 (reference)		58/18	1.00 (reference)	
Increase ≥25%	48/11	0.45 (0.18-1.16)		37/29	2.60 (1.53-4.39)		48/22	1.57 (0.83–2.99)	

- Higher 6 week NLR was **independently associated** with a lower ORR, shorter PFS and OS
- A higher baseline NLR trended toward lower ORR, shorter PFS, and shorter OS
 - Nearly identical to HR seen in a study of NLR in mRCC treated with VEGF-TT (Templeton et al., *Eur Urol* 2016)
- Relative NLR change from baseline to 6 weeks was an independent prognostic factor for PFS and OS (p < 0.001 and p = 0.004).
 - − A decrease \geq 25% = associated with an improved PFS, and significantly better OS
 - By contrast, an NLR increase by ≥25% = associated with significantly worse PFS and OS
 - An NLR increase by ≥25% was associated with poorer PFS and OS, regardless of baseline NLR levels

<u>Clinical applicability: CT scans at baseline, 6-week, and next assessment</u>

Baseline CT assessment6-week CT assessmentSubsequent CT assessmentImage: C

- First patient (upper panels) had SD on 6-week scan with a **34% decrease** in NLR from baseline → subsequently displayed PR on next assessment
- Second patient (lower panels) had SD on 6-week scan with a 113% increase in NLR from baseline → subsequently displayed PD on next assessment

Cellular metabolism has a role in cancer: analysis of serum metabolomics

One method/instrument: Liquid chromatography-mass spectrometry (LC-MS) / triple quadrupole

HPLC: High performance liquid chromatography; ESI: Electro-spray ionization; APCI: Atmospheric pressure chemical ionization; MRM: Multiple reaction monitoring

Modified from SRMAtlas

Metabolomics cohort design and specimen collection

87 melanoma patients enrolled

92 RCC patients enrolled

Overview of the profiles of polar metabolites in two cancer types

Serum metabolic landscapes cluster by cancer type / lineage

What are the serum metabolic features correlating with response in RCC?

Compare metabolite levels between responders (CR, PR) and non-responders (SD, PD) to nivolumab

Higher baseline serum adenosine is significantly associated with worse PFS in nivolumab-treated RCC patients

Binary adenosine feature	No. of Patients	Median PFS months (95% CI)			
High adenosine	20	2.5 (1.4-7.3)	-		
Low adenosine	71	p=0.003 5.4 (2.9-9.6)	(

Continuous adenosine feature

Hazard ratio, 1.83 (95% CI, 1.28-2.62), p=0.0022

High serum adenosine levels are associated with an intrinsically immunesuppressive transcriptional state in renal tumors

Top 20 pathways *negatively* correlated with serum adenosine levels

Combination of adenosinergic pathway inhibitors with immune-checkpoint blockade (A2AR inhibitor CPI-444 and PDL1 inhibitor atezolizumab)

Phase 1/1b Trial with CPI-444: Disease Control in Renal Cell Cancer Partial responses can be seen in an anti-PD-1 progressing and naïve patients

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author, Permission required for reuse.

06/05/2017

Ongoing efforts with biomarkers in mRCC

- Exciting "potential" biomarkers at the:
 - IHC (protein level), mostly around PD-L1
 - WES/Genomics
 - RNA seq
 - Blood (e.g. metabolomics, T-cell repertoire)
 - ERVs
 - Microbiota*
- RCC currently does not have a "one size fits all biomarker"
 - Need larger samples, ideally from phase III trial with a non-IO control
- Combinations IO/IO, IO/VEGF can potentially complicate biomarkers discovery in mRCC

- "Gut microbiome and its role in host response to Immune Checkpoint Blockade for metastatic RCC"
 - PI: A. Lalani (JCC) with M. Surette (Farncombe)
 - In collaboration with B. Routy, others... and you?
 - Prospective, pilot study of fecal sample collection at start and on-treatment with immunotherapy
 - 16S RNA, metagenomic analysis
 - Merged with granular clinical data

Ongoing efforts with biomarkers in mRCC

- Exciting "potential" biomarkers at the:
 - IHC (protein level), mostly around PD-L1
 - WES/Genomics
 - RNA seq
 - Blood (e.g. metabolomics, T-cell repertoire)
 - Microbiota*
 - ERVs
- RCC currently does not have a "one size fits all biomarker"
 - Need larger samples, ideally from phase III trial with <u>a non-IO control</u>
- Combinations IO/IO, IO/VEGF can potentially complicate biomarkers discovery in mRCC
 - Other modalities: What about role of (immune potentiating) SBRT?

Cytoreductive **S**tereotactic **H**ypofractionated **R**adiotherapy With Combination Ipilumimab/**N**ivolumab for Metastatic **K**idney Cancer (CYTOSHRINK)

Study Co-Chairs: A. Swaminath, A. Lalani, S. Hotte

CYTOSHRINK – Schema and endpoints

Experimental arm: <u>Cycle 1</u> Ipilimumab/Nivolumab followed by

<u>SBRT</u> to primary kidney lesion (30-40 Gy in 5 fractions) followed by

Cycle 2-4 Ipilimumab/Nivolumab

Maintenance nivolumab per standard of care

Control arm: <u>Cycle 1-4</u> Ipilimumab/Nivolumab

Maintenance nivolumab per standard of care

1° endpoint: 1-year PFS rate

(75% experimental vs 50% control, 80% power, 2-sided α =0.1)

Key 2° endpoints: Safety ORR QOL Correlatives

Planned correlatives

- Circulating blood markers:
 - Baseline IL-6 and other cytokines/angiokines
 - Germline DNA and ctDNA
 - PBMCs
- Stool Microbiome:
 - 16S RNA
 - metagenomics

Summary

- Many exciting genomic correlates of ICB response → need validation: functional preclinical models, prospective clinical cohorts
 - Clinically annotated data w/ diversity of race, ethnicity, age, tumour histology...
- Future efforts focus on coupling with epigenomics, proteomics, metabolomics, microbiome
- Bioinformatic approaches needed to coordinate array of information
 develop risk scores to capture driving alterations influencing ICB response
- Ultimately, we seek to maintain the remarkable recent progress in bringing rational options to our RCC patients

McMaster University HEALTH SCIENCES

THANK YOU

lalania@hhsc.ca

