

IMDC Criteria How to Create 2.0

Daniel Heng MD MPH FRCPC MSC Clinical Professor, University of Calgary Medical Director, Clinical Research Unit, TBCC

International mRCC Database Consortium (IMDC)

10,007 patients from 40 international institutions

Risk Stratification

International mRCC Database Consortium (IMDC) Prognostic Factors

a.k.a. Heng Criteria

Clinical

- Low Karnofsky performance (<80%)
- Time from diagnosis to treatment <1 year

Laboratory

- Low hemoglobin (< LLN)
- High "corrected" serum calcium (> ULN)
- High neutrophils (> ULN)
- High levels of platelets (> ULN)

Categorized into 3 risk groups with decreasing associated survival time

Favorable (0 factors)

Intermediate (1–2 factors)

Poor (3+ factors)

IMDC Prognostic Factors

IMDC in Second-Line Targeted Therapy

5

IMDC in Third-Line Targeted Therapy

IMDC in Non-clear Cell RCC

Kroeger N, et al. Cancer. 2013;119:2999-3006.

IMDC in Papillary RCC TKI First Line

Wells JC, et al. Cancer Med. 2017;6:902-909.

IMDC in Nivolumab Second Line

Yip S, et al. Cancer 2018

OS according to IMDC prognostic risk groups

NIVOREN Trial: Second-line Nivolumab

Albiges et al GU ASCO 2019

OS according to IMDC risk factor number

NIVOREN Trial: Second-line Nivolumab

Albiges et al GU ASCO 2019

How Do We Use IMDC Criteria?

Patient Counselling

• Prognosis

ResearchClinical Trials

• Adjustment

Treatment Selection

• 1st line

• Cytoreductive Nephrectomy

Online **IMDC** Criteria Calculator mdcalc.com

Google: "Heng Criteria"

IMDC (International Metastatic RCC **Database Consortium) Risk Score for RCC** 57

Determines overall survival in patients treated with systemic therapy.

INSTRUCTIONS

Note: this calculator was formerly referred to as the Heng Score for Metastatic Renal Cell Carcinoma Prognosis.

When to Use \mathbf{v}	Pearls/Pitfalls 🗸	Why Use 🗸

Less than one year from time of diagnosis to systemic therapy	No 0	Yes +1
Performance status <80% (Karnofsky)	No 0	Yes +1
Hemoglobin < lower limit of normal Normal: 120 g/L or 12 g/dL	No 0	Yes +1
Calcium > upper limit of normal Normal: 8.5-10.2 mg/dL	No 0	Yes +1
Neutrophil > upper limit of normal Normal: 2.0–7.0×10°/L	No 0	Yes +1
O points Favorable risk		
Median survival: 43.2 months		

About the Creator

Wanling Xie

Get featured on MDCalc

Contribute t Calculators Guidelines Practice Pear

Join us 🕽

Also from MDCalc...

Practice Pearls: Renal Cell Carcinoma

Related Calcs

TNM RCC Staging

IMDC Graphical Interface Courtesy Anobel Odisho Predicting Outcomes in Metastatic Kidney Cancer

This interactive tool is designed to estimate outcomes in metastatic kidney cancer, based on clinical data derived from the International Metastatic Renal Cell Carcinoma Database Consortium. By entering known patient data, this tool can show outcomes from patients with similar characteristics. This platform can help better understand possible outcomes and aid in the treatment decision process for each individual.

To begin using the tool, you can begin entering values in the fields below or by selecting ranges of values in the figure.

Patient Charac	cteristics		Results Survival Plot	
Prior Nephrectomy		Performance Status	Number of Patients Shown:	523
Ves	✓ No	20 to 100 Years from Diagnosis	Median Survival Time (Months):	13.3 <mark>(11.8 - 14.6)</mark>
Histology		0 to 5	1 Year Survival Rate:	53% (<mark>49% - 58%</mark>)
Clear Cell Non-clear	Non-clear	0.05 to 6.64	2 Year Survival Rate:	30% (26% - 34%)
	Cell	Hemoglobin 79 to 116	3 Year survival Rate:	22% (18% - 26%)
		Neutrophil Count		
		1 to 6 Platelet Count		
		3.79 to 1000		
Reset Filters				

IMDC Graphical Interface Courtesy Anobel Odisho Predicting Outcomes in Metastatic Kidney Cancer

This interactive tool is designed to estimate outcomes in metastatic kidney cancer, based on clinical data derived from the International Metastatic Renal Cell Carcinoma Database Consortium. By entering known patient data, this tool can show outcomes from patients with similar characteristics. This platform can help better understand possible outcomes and aid in the treatment decision process for each individual.

To begin using the tool, you can begin entering values in the fields below or by selecting ranges of values in the figure.

IMDC Graphical Interface Courtesy Anobel Odisho

Examples

IMDC + new biomarker	Additive Accuracy (c-index before \rightarrow after)	Cost	Does it make sense?
+history (e.g. gender)	0.76 → 0.77	Free	No
+lab test (e.g. creat)	0.76 → 0.77	Almost free	No
+IHC (e.g. BAP1)	0.76 → 0.79	More expensive	Maybe
+Genomic composite	0.76 → 0.79	Expensive	No
+Genomic composite	0.76 → 0.95	Expensive	YES!

All additions increase complexity. The more complex the model, the less likely it will be used

Potential Additional Prognostic Factors

Population	Adjusted HR*	Р	OS With v Without Prognostic Factor (months)	Prevalence (%)
Bone metastases ⁵³	1.38	< .001	14.9 <i>v</i> 25.1	34
Liver metastases ⁵³	1.37	< .001	14.3 v 22.2	19
Not clinical-trial eligible ⁵⁴	1.55	< .001	12.5 <i>v</i> 28.4	35
Elevated NLR ⁵⁵	1.69†	< .001	NR	NR
Elevated CRP ⁵⁶ ($>$ 5 mg/L)	1.29‡	< .001	12.0 <i>v</i> 50.0	65.5
Nonclear cell RCC ⁵⁷	1.41	< .001	12.8 <i>v</i> 22.3	11.4
Papillary RCC ⁵⁸	1.40	< .001	13.8 <i>v</i> 21.9	9.3
High body mass index ⁵⁷	0.84	NR	25.6 <i>v</i> 17.1	60
Brain metastases ⁵⁸	1.24	.103	14.4 <i>v</i> 19.0	15
Advanced age ⁵⁹ (> 75 years)	1.002	.332	16.8 <i>v</i> 19.7	10.4
Renal dysfunction ⁶⁰ (GFR $<$ 60 mL/min/1.73 m ²)	0.90	.439	27.5 <i>v</i> 19.2	49.5

Jeffrey Graham; Shaan Dudani; Daniel Y.C. Heng; Journal of Clinical Oncology 2018 363567-3573.

Prognostic

Predictive

The Future of Prediction

TSC1/TSC2/mTOR for mTOR inhibitors Kwiatkowski DJ, et al. *Clin Cancer Res.* 2016;22:2445-2452.

The Role of Machine Learning in Prognostication and Prediction

From Decision Trees to Neural Networks

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, Ian Goodfellow, and Aaron Courville, 2016.

Example Kidney Cancer Neural Network

GEORGE R. R. MARTIN'S A GAME OF THRONES 5-BOOK BOXED SET (SONG...

by George R. R. Martin

Mass Market Paperback | October 29, 2013

SEE THE COLLECTION Books to TV

★★★★★ (128)

\$36.46 online \$59.95 list price SAVE 39%

` Earn 182 plum® points

Prices and offers may vary in store

Want it delivered by April 9, 2019? Order in the next 11 hours and 50 minutes and choose RUSH SHIPPING.

OTHER ITEMS FROM THIS COLLECTION

ABOUT THE AUTHOR

George R. R. Martin is the #1 New York Times bestselling author of many novels, including the acclaimed series A Song of Ice and Fire—A Game of Thrones, A Clash of Kings, A Storm of Swords, A Feast for Crows, and A Dance with Dragons. As a writer-producer, he has worked on The Twilight Zone, Beauty and the Beast, and various feature fi...**READ MORE** +

FIRE & BLOOD: 300 YEARS BEFORE A... by George R. R. Martin

\$32.90 \$47.00

✓ In stock online
✓ Available in stores
★★★★ (16)

A KNIGHT OF THE SEVEN KINGDOMS:... by George R. R. Martin

\$34.70 \$38.00

- ✓ In stock online
- ✓ Available in stores

★★★★★ (48)

A GAME OF THRONES: A SONG OF ICE... by George R. R. Martin

\$12.31 \$13.50

- In stock onlineAvailable in stores
- ★★★★★ (298)

Limitations

- Need huge data sets, huge computing power
- Neural networks are a black box
 - Cannot explain how you got to that answer
- Do patients and physicians believe the black box?
- The cost of being wrong is much higher in medicine than in the bookstore

OTHER ITEMS FROM THIS COLLECTION

Conclusions

Use IMDC Criteria

Biomarkers need to be tested properly

Excited about the future

THANK YOU!

daniel.heng@ahs.ca

@DrDanielHeng

