Clinical Management of Hereditary Kidney Cancer

Mark W. Ball, MD

Assistant Research Physician & Staff Clinician

National Cancer Institute

No disclosures.

Objectives

- Discuss treatment strategies for patients with hereditary kidney cancer syndromes:
 - Active Surveillance
 - Surgery
 - Ablative therapy
 - Systemic therapy

Challenges in Hereditary Kidney Cancer

- Multiple kidney tumors
- Multiple operations
- When and how to intervene to:
 - Prevent metastasis
 - Preserve kidney function
 - Maintain quality of life

Finding a favorable balance

- Upfront bilateral radical nephrectomy + HD
- Historic approach
- Protect from metastasis
- Obviate the need for repeat surgeries

- Intervene for every observable renal tumor
- Would require dozens of renal interventions, each with increased complications

When are tumors safe to watch?

Goals of treatment

 In general, the over-arching goal of the surgeon is to "reset the clock" meaning removed as many lesions as possible in one surgery in an attempt to prolong the interval between ipsilateral renal surgeries.

Active Surveillance

- Initial observations were consistent with the sporadic population:
 - Increasing size associated with increasing metastatic potential
- A threshold of 3 cm was developed at our institution

Hereditary Cancer as a Model

Active Surveillance

Managed by 3 cm guideline

Genetically defined:

VHL (clear cell) Hereditary Papillary Renal Carcinoma (*MET*, papillary) Birt-Hogg-Dubé (Folliculin, Chromophobe)

AS until largest tumor 3 cm \rightarrow all tumors resected

Active Surveillance

Compare rates of Metastases

Managed by 3 cm guideline

Not managed by 3 cm guideline (new dx, referral, lost to fu)

Results

- From a total of 764 screened patients, 440 patients (57.5%) developed solid kidney tumors.
- Median follow-up was 8.6 years (IQR 2-14 year, max 27 years)
- 178 patients (42.7%) never had a tumor > 3 cm
- Metastatic disease developed in 42 patients (10.1%).

No patients developed metastatic disease when managed by the 3 cm guideline.

< 3

-10

3-4

4-5

5-6

TUMOR SIZE

6-7

Tumor Size	# mets/ # pts (%)	70	Metastatic Potential by Tumor Size
<u>≤</u> 3 cm	0/178 (0%)	60	
3-4 cm	4/109 (3.7%)	DISEASE 20	
4-5 cm	8/62 (12.9%)	40 40	
5-6 cm	7/27 (25.9%)	30 HIII	
6-7 cm	6/12 (50%)	N 20	
> 7 cm	17/28 (60%)	04024 0	

NATIONAL CANCER INSTITUTE Center for Cancer Research Ball et al AUA 2018

> 7

Metastasis-Free Survival

Impact of size (per cm): HR 1.6 (95%CI 1.5-1.8), p < 0.0001

Size-based Risk Stratification of Genetically-Defined Renal Tumors

Tumor Size	VHL # mets/# pts	BHD # mets/# pts	HPRC # mets/# pts	All # mets/# pts
< 3 cm	0/148 (0%)	0/61 (0%)	0/15 (0%)	0/224 (0%)
3-4 cm	4/139 (2.9%)	0/27 (0%)	0/5 (0%)	4/171 (2.3%)
4-5 cm	8/62 (12.9%)	1/18 (5.3%)	1/6 (16.7%)	10/86 (11.6%)
5-6 cm	7/27 (25.9%)	0/14 (0%)	0/5 (0%)	7/46 (15.2%)
6-7 cm	6/12 (50%)	0/7 (0%)	0 (0%)	6/19 (31.6%)
> 7 cm	11/28 (60%)	7/23 (30%)	5/12 (41.7%)	23/53 (43.4%)

Ball et al AUA 2019

Surveillance Schedules

- AS follow-up intervals should be optimized so that patients are neither under- or over-imaged, which requires knowledge of tumor growth kinetics
- AS schedules are often proposed based on sporadic renal tumor cohorts, comprising both benign and malignant tumors of different histologic subtypes (e.g. q6-12 months).
- Less is known about the growth kinetics of hereditary -associated renal tumors

Tumor growth on AS

	VHL	FLCN	MET	BAP1	Total
Patients	182	81	27	2	292
Tumors	286	91	52	6	435
Tumor					
measurem	1474	443	268	28	2213
ents					

Growth Rates of Genetically-Defined Renal Tumors

Ball MW et al AUA 2019

Growth on AS

Type of genetic alteration does not impact growth

NATIONAL CANCER INSTITUTE Center for Cancer Research Ball MW et al AUA 2019

Surveillance Recommendations

- Cross-sectional imaging
 - MRI preferred
- VHL, BHD, HPRC every 1 -3 years depending on tumor burden
- HLRCC annual imaging

Surgical Considerations

- Bilateral multifocal tumors
- Reoperative surgery
- Tumor enucleation spare normal renal parenchyma.
- Selective ischemia reserve for deep and/or hilar tumors, resect off clamp

Reoperative Surgery

Principles

- Minimize surgical footprint
 - Preserve Gerota's fascia
 - Preserve psoas fascia
 - Minimize hilar dissection perform many resections off clamp
 - Minimally invasive as possible
 - Preoperative MRI
 - Intraoperative Ultrasound

Operative Approach

Both T2 and T1 contrast enhanced phases are useful

Clinic-Based Ultrasound

Preoperative Planning

Enucleation

Endophytic Tumors

Endophytic Tumors

Endophytic Tumors

Outcomes

- MIPN after prior open (J Endourol. 2013 Feb; 27(2): 196–201)
 - 40% conversion rate to open
- > 20 tumors in 1 surgery (J Urol. 2011 Jan; 185(1): 49–53.)
 - Mean OR times 9 hours
 - 60% off clamp
 - Mean EBL 3500
 - Complications >50%

Economic Burden of Repeat Renal Surgery on Solitary Kidney—Do the Ends Justify the Means? A Cost Analysis

Nnenaya Q. Agochukwu, Adam R. Metwalli, Alexander Kutikov, Peter A. Pinto, W. Marston Linehan and Gennady Bratslavsky*

Salvage Surgery After Percutaneous Ablation of Renal Mass in Solitary Kidney in a Patient With Von Hippel-Lindau

Patrick T. Gomella, W. Marston Linehan, Mark W. Ball

Hereditary Leiomyomatosis Renal Cell Carcinoma Type 2 Papillary RCC

Fumarate Hydratase (FH): HLRCC Gene

NIH Center for Cancer Research

Am J Hum Genet 71:2003Tomlinson, et al. Nature Genetics: 30 2003@NCIResearchCtr38

24 Year Old Female

Tumor Inside Cyst

Tumor Invading Renal Parenchyma

7 cm

43-year-old woman

43-year-old woman

HLRCC Case 2

Surgery: left robotic radical nephrectomy & RPLND

Pathology

- Poorly differentiated
- Type 2 Papillary RCC
- рТ3а
- 8/31 lymph nodes positive

- Enrolled in phase II clinical trial:
 - Bevacizumab and erlotinib
 - Cycle 35
 - 3 years post-operatively
 - Ongoing partial response
 - Only site of metastasis is left iliac bone

PET Post-treatment

NIH

PET Post-treatment

🥑 @NCIResearchCtr 49

Hepatic Metastasis Pre-treatment

Hepatic Metastasis Post-treatment

Regression of a renal tumor in a patient with HPRC treated with Foretinib

Pre-Treatment

Regression of a renal tumor in a patient with HPRC treated with Foretinib

Pre-Treatment

Following 49 cycles of therapy

Foretinib 39 Target Lesions from 9 Patients With Known Gene Mutation (MET)

Conclusions

- Genes matter different gene, different treatment paradigms
- Active surveillance is appropriate for most syndromes, and limits the number of renal interventions.
- HLRCC is the exception recommend against surveillance, and wide resection for any solid tumor.

Acknowledgements

Clinical Team:

- W. Marston Linehan, MD
- Ramaprasad Srinivasan, MD, PhD
- Cris Leite
- Caitlin Drew, RN
- Debbie Nielsen, RN
- Lindsay Middleton, RN
- Clinical Fellow
- George Washington U Residents
- Georgetown U Residents
- Walter Reed Residents

Genetics Team

- Laura Schmidt, PhD
- Cathy Vocke, PhD
- Chris Ricketts, PhD
- Caitlin Drew, RN
- Debbie Nielsen, RN
- Lindsay Middleton, RN
- Laboratory of Pathology
 - Maria Merino, MD
 - Radiology
 - Ashkan Malyeri, MD
 - Rabindra Gautam
 - Kailash Daryanani

- Data Management
 - James Peterson
 - Kristin Choo

