Efficacy and safety of mirabegron vs. placebo add-on therapy in men with overactive bladder symptoms receiving tamsulosin for underlying benign prostatic hyperplasia (PLUS)

Sender Herschorn¹, Steven Kaplan², Kevin McVary³, David Staskin⁴, Christopher Chapple⁵, Steve Foley⁶, Javier Cambronero Santos⁷, Rita M. Kristy⁸, Nurul Choudhury⁹, John Hairston⁸, Carol Schermer⁸

¹Department of Surgery/Urology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ²Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; ³Department of Urology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA; ⁴Department of Urology, St Elizabeth's Medical Center, Brighton, MA, USA; ⁵Department of Urology, Royal Hallamshire Hospital, Sheffield, UK; ⁶Department of Urology, Royal Berkshire Hospital, Reading, UK; ⁷Department of Urology, Infanta Leonor Hospital, Madrid, Spain; ⁸Astellas Pharma Global Development Inc., Northbrook, IL, USA; ⁹Astellas Pharma Europe Ltd., Chertsey, UK
Potential Conflict of Interest Disclosure

<table>
<thead>
<tr>
<th>Speaker Name</th>
<th>Advisory Boards</th>
<th>Speaker’s Bureau</th>
<th>Payment/ Honoraria</th>
<th>Grants/ Research Support</th>
<th>Clinical Trials</th>
<th>Investments</th>
<th>Patents</th>
<th>Personal Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender Herschorn</td>
<td></td>
<td></td>
<td></td>
<td>Astellas Pharma</td>
<td></td>
<td></td>
<td></td>
<td>Astellas Pharma Pfizer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ipsen</td>
<td></td>
<td></td>
<td></td>
<td>Pfizer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ixaltis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Allergan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

- **Tamsulosin**
 - Effective for treatment of symptoms associated with BPH\(^1,2\)

- **Mirabegron**
 - \(\beta_3\)-adrenoreceptor agonist
 - Alternative to antimuscarinics for treating OAB symptoms\(^3\)
 - Effective and well-tolerated treatment in adults\(^4,5\)

- **OAB symptoms commonly overlap with those of BPH in men\(^6\)**
 - Limited data available on the use of OAB medications in patients with BPH
 - MATCH study: efficacy of tamsulosin + mirabegron was superior to tamsulosin + placebo in 565 men with BPH and OAB symptoms\(^7\)
 - Tamsulosin + mirabegron was effective and well-tolerated in a Japanese study of 94 patients with BPO and OAB symptoms\(^8\)

Study objective
Evaluate the efficacy and safety of mirabegron vs. placebo for treating OAB symptoms in men concurrently receiving tamsulosin for LUTS due to underlying BPH.

LUTS, lower urinary tract symptoms.
PLUS: Study Design

Men aged ≥40 years receiving tamsulosin (≥2 months) for LUTS due to BPH

- **Run-in period**
 - 4 weeks

- **Randomization**
 - 3-day diary
 - ≥8 micturitions/day
 - ≥2 urgency episodes/day (Grade 3–4)
 - PSA <10 ng/mL*

- **Double blind, once-daily, 12-week treatment period**
 - Tamsulosin 0.4 mg + mirabegron 25 mg
 - Tamsulosin 0.4 mg + placebo**

- **Follow-up call**
 - 4 weeks
 - 8 weeks
 - 16 weeks

*Patients had to have a PSA of <4 ng/mL or a PSA of ≥4–<10 ng/mL with a negative prostate biopsy in the past 2 years.

After 4 weeks of the treatment period, placebo administration was adjusted to be equivalent to mirabegron 50 mg.

PSA, prostate specific antigen.
PLUS: Endpoints

Primary endpoint
Change from Baseline to EoT in mean number of micturitions/day

- **Secondary endpoints included**
 - Change from Baseline in
 - MVV/micturition
 - Mean number of urgency episodes/day
 - TUFS
 - Total IPSS
 - Safety
 - Occurrence of TEAEs
 - Changes from Baseline/Screening in post-void residual volume and maximum urinary flow

EoT, end of treatment; IPSS, International Prostate Symptom Score; MVV, mean volume voided; TEAE, treatment-emergent adverse event; TUFS, total urgency and frequency score.
Patient Demographics and Baseline Disease Characteristics (FAS)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tamsulosin + placebo (n = 339)</th>
<th>Tamsulosin + mirabegron (n = 337)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean (SD)</td>
<td>64.9 (9.6)</td>
<td>64.9 (8.4)</td>
</tr>
<tr>
<td>Age group 40–<65 years, n (%)</td>
<td>149 (44.0)</td>
<td>147 (43.6)</td>
</tr>
<tr>
<td>Age group ≥65 years, n (%)</td>
<td>190 (56.0)</td>
<td>190 (56.4)</td>
</tr>
<tr>
<td>Duration of OAB symptoms in months, mean (SD) [n]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet OAB</td>
<td>65.9 (49.9) [129]</td>
<td>77.7 (56.8) [132]</td>
</tr>
<tr>
<td>Dry OAB</td>
<td>65.5 (58.6) [210]</td>
<td>58.6 (43.0) [205]</td>
</tr>
<tr>
<td>Mean number of micturitions/day, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><8</td>
<td>11 (3.2)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td>8–15</td>
<td>310 (91.4)</td>
<td>314 (93.2)</td>
</tr>
<tr>
<td>>15</td>
<td>18 (5.3)</td>
<td>18 (5.3)</td>
</tr>
<tr>
<td>Number of incontinence episodes/day, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>210 (61.9)</td>
<td>205 (60.8)</td>
</tr>
<tr>
<td>>0–<3</td>
<td>102 (30.1)</td>
<td>85 (25.2)</td>
</tr>
<tr>
<td>≥3</td>
<td>27 (8.0)</td>
<td>47 (13.9)</td>
</tr>
<tr>
<td>Total IPSS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild (1–7)</td>
<td>8 (2.4)</td>
<td>10 (3.0)</td>
</tr>
<tr>
<td>Moderate (8–19)</td>
<td>229 (67.6)</td>
<td>235 (69.7)</td>
</tr>
<tr>
<td>Severe (20–35)</td>
<td>102 (30.1)</td>
<td>92 (27.3)</td>
</tr>
</tbody>
</table>

FAS, full analysis set (all patients who took ≥1 dose of double-blind treatment after randomization, reported ≥1 micturition in the Baseline diary, and ≥1 micturition post-Baseline); SD, standard deviation. *Based on 3-day diary.
Primary Endpoint: Change in Mean Number of Micturitions/Day (FAS)

-0.39 (−0.76, −0.02)*; P = 0.039

Tamsulosin + placebo (n = 339)
Tamsulosin + mirabegron (n = 337)

Baseline, mean (SE)
10.71 (0.14) 10.71 (0.14)

Adjusted mean change from Baseline to EoT (95% CI)

−1.62 (−1.88, −1.36) −2.00 (−2.26, −1.74)

ANCOVA model including treatment group, region, and age group as fixed factors and Baseline as a covariate. ANCOVA, analysis of covariance; CI, confidence interval; SE, standard error.
Secondary Endpoint: Change in MVV/Micturition (FAS)

Adjusted mean change from Baseline to EoT (95% CI)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Baseline, mean (SE)</th>
<th>Adjusted Mean Change (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamsulosin + placebo</td>
<td>167.89 (3.06)</td>
<td>16.32 (11.57, 21.07)</td>
</tr>
<tr>
<td>Tamsulosin + mirabegron</td>
<td>172.33 (3.13)</td>
<td>25.57 (20.81, 30.33)</td>
</tr>
</tbody>
</table>

ANCOVA model including treatment group, region, and age group as fixed factors and Baseline as a covariate.
Secondary Endpoint: Change in Mean Number of Urgency Episodes/Day (Grades 3–4; FAS)

-0.67 (−1.13, −0.21)*; \(P = 0.004 \)

Tamsulosin + placebo (n = 339)
Tamsulosin + mirabegron (n = 337)

Adjusted mean change from Baseline to EoT (95% CI)

Baseline, mean (SE)
5.24 (0.17)
5.65 (0.18)

ANCOVA model including treatment group, region, and age group as fixed factors and Baseline as a covariate.
Secondary Endpoint: Change in Mean TUFS (FAS)

Tamsulosin + placebo (n = 339)

Baseline, mean (SE) 25.31 (0.42)

Adjusted mean change from Baseline to EoT (95% CI)

-6.41 (−7.32, −5.51)

Tamsulosin + mirabegron (n = 337)

Baseline, mean (SE) 26.20 (0.46)

Adjusted mean change from Baseline to EoT (95% CI)

-8.29 (−9.19, −7.38)

-1.87 (−3.15, −0.59)*; P = 0.004

ANOVA model including treatment group, region, and age group as fixed factors and Baseline as a covariate.
Secondary Endpoint: Change in Mean Total IPSS (FAS)

Baseline, mean (SE)
- Tamsulosin + placebo (n = 335)
 16.9 (0.3)
- Tamsulosin + mirabegron (n = 336)
 16.7 (0.3)

Adjusted mean change from Baseline to EoT (95% CI)
- Tamsulosin + placebo
 -0.1 (-1.0, 0.8)*; P = 0.812
- Tamsulosin + mirabegron
 -5.7 (-6.3, -5.1)

ANCOVA model including treatment group, region, and age group as fixed factors and Baseline as a covariate.
Safety Outcomes (SAF)

<table>
<thead>
<tr>
<th>Safety parameter, n (%)</th>
<th>Tamsulosin + placebo (n = 354)</th>
<th>Tamsulosin + mirabegron (n = 352)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAEs</td>
<td>111 (31.4)</td>
<td>91 (25.9)</td>
</tr>
<tr>
<td>Drug-related TEAEs</td>
<td>21 (5.9)</td>
<td>42 (11.9)</td>
</tr>
<tr>
<td>Serious TEAEs</td>
<td>8 (2.3)</td>
<td>10 (2.8)</td>
</tr>
<tr>
<td>Drug-related serious TEAEs</td>
<td>1 (0.3)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>TEAEs leading to study drug discontinuation</td>
<td>4 (1.1)</td>
<td>7 (2.0)</td>
</tr>
<tr>
<td>Drug-related TEAEs leading to study drug discontinuation</td>
<td>2 (0.6)</td>
<td>6 (1.7)</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>1 (0.3)</td>
<td>6 (1.7)</td>
</tr>
<tr>
<td>Patients requiring catheterization</td>
<td>0 (0)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>Post-void residual volume in mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, mean (SD)</td>
<td>30.2 (40.3)</td>
<td>30.6 (41.5)</td>
</tr>
<tr>
<td>Change to Week 12/EoT, mean (95% CI) [n]</td>
<td>3.8 (−0.9, 8.4) [331]</td>
<td>14.7 (8.5, 21.0) [321]</td>
</tr>
<tr>
<td>Maximum urinary flow in mL/sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening, mean (SD)</td>
<td>15.7 (7.87)</td>
<td>16.3 (15.93)</td>
</tr>
<tr>
<td>Change to Week 12/EoT, mean (95% CI) [n]</td>
<td>0.0 (−1.10, 1.08) [319]</td>
<td>−1.8 (−3.76, 0.10) [309]</td>
</tr>
</tbody>
</table>

SAF, safety analysis set (all patients who took ≥1 dose of double-blind treatment after randomization).
PLUS Study: Conclusions

Mirabegron superior to placebo

Mean number of urgency episodes/day

Mean number of micturitions/day

MVV/micturition

TUFS

SAFETY

No unexpected safety concerns

Mirabegron is a potentially useful add-on therapy to tamsulosin for men with BPH and OAB symptoms
Acknowledgments

- The PLUS study was funded by Astellas Pharma Global Development, Inc.
- The authors would like to thank all patients and sites who took part in the study.
- Medical writing support was provided by Michael Parsons of Elevate Scientific Solutions and funded by Astellas Pharma Global Development, Inc.
Urology Update 2019
October 18 - 19, 2019 - Hilton Downtown Toronto

cpd.utoronto.ca/urology/

Canada's Premier Urology CPD Conference

Uro-Oncology
Matthew R. Cooperberg, MD, MPH
Professor of Urology and Epidemiology & Biostatistics
Associate Chair, Clinical Research Dept. of Urology
Helen Diller Family Chair in Urology
University of California, San Francisco

Rodney H. Breau, MSc MD FRCS
Surgical Oncologist, Assistant Professor
Division of Urology, University of Ottawa
Department of Surgery Research Chair in Urologic Oncology
Scientist, Ottawa Hospital Research Institute Clinical Epidemiology Program
The Ottawa Hospital

Brian F. Chapin, MD
Associate Professor, Department of Urology, Division of Surgery,
The University of Texas MD Anderson Cancer Center, Houston, TX

Michael A. O'Donnell, MD
Professor of Urology
Carver College of Medicine, University of Iowa

Pediatric urology
Paul Merguerian, MD MS FAAP
Professor of Urology University of Washington
Michael Mitchell Chair Pediatric Urology
Division Chief Urology
Seattle Children's Hospital

Stones, endourology, and MIS
Timothy D. Averch, MD, FACS
Chief, Division of Urology
Clinical Professor and Vice Chair for Quality
Department of Surgery
Palmetto Health University of South Carolina Medical Group

Functional urology
Benjamin M. Brucker, MD
Associate Professor, Departments of Urology and Obstetrics and Gynecology
New York University School of Medicine
Director, Female Pelvic Medicine and Reconstructive Surgery Program and Neuro-Urology

Surgical safety in the operating room
Guylaine Lefebvre, MD, FRCS, FACC
Director Practice Improvement
Canadian Medical Protective Association
Professor Obstetrics and Gynecology
University of Toronto