

Reducing Radiation Risk For You and Your Patient

74th Annual Meeting Quebec, 2019 Saturday June 29th

Mitchell R. Humphreys, MD Chair and Professor, Dept of Urology Dean MCSCPD Mayo Clinic

Terminology

- Ionizing radiation involves the detachment of electrons from subatomic particles and is a known carcinogen
 - Deterministic effects
 - Occur above a threshold
 - Dose-related increasing risk and severity
 - Classically: radiation-induced dermatitis
 - Stochastic effects
 - Caused by mutation or permanent change, cell remains viable
 - Absence of a threshold dose
 - Increased levels of exposure do not affect the type or severity of the effect, but do increase the probability of an effect

Skin threshold dose is 2Gy

Terminology

- Absorbed dose amount of radiation in the tissue
 - Measured in Gray (Gy)
- Exposure = number of ions produced by x-rays per kilogram of air
 - Measured in Roentgen (R)
- Equivalent dose dose in a specific organ or tissue
- Effective dose reflects whole body exposure
 Measured in rem or Sievert (Sv)
- Dose area product (DAP) radiation dose to air multiplied by area of the x-ray field
 - Measured in Gy cm²

Thresholds

- European Union
 - Effective dose limit is 100mSv over 5 yrs
 - No more than 50mSv in any one year
- United States
 - Effective dose limit of 50mSv in one year
 - Lifetime limit of 10mSv x age(yrs)
- International Commission on Radiological Protection
 - No more than 20mSv/yr over 5 years
 - No more than 50mSv in one year

Background

 Up to 50% of radiation dose received by the United States population is attributable to medically related imaging

- Annual per capita radiation exposure from medical sources in the U.S. 0.54 mSv in 1980
 → 3.0 mSv in 2006
 - 600% increase
 - Attributed to increased use of CT

62 million in 2006

Risks in Stone Patients

- Stone pts at risk for significant radiation exposure
 - Ranging from 1.18 to 37.66 mSv
- Acute stone episode pts undergo 4 radiographic studies in the 1-year period after stone event.
 1.2 KUB, 1.7 NCCT, 1 IVP
- Obesity increased FT by 36%, and mean ED by 177%
 - BMI 30-39.9 kb/m2 = twofold increase in ED
 - BMI 40 kg/m2 = threefold increase in ED

Stone Patients

- Surgical management Ureteroscopy
 - Nonobese males are exposed to a median 1.13 mSv
 - Median fluoroscopy time 46.95 seconds
 - Median stone burden 5 mm
 - Skin entrance exposed to the highest absorbed dose rate
 - Small intestine → gallbladder
- Surgical management PCNL
 - Mean ED for R PCNL 7.63 mSv
 - Mean ED for <u>L PCNL 8.11 mSv</u>
 - Risks for increased exposure:
 - high BMI, increased stone burden, increased # of access tracts

Surgical management – ESWL

 Mean total ED in males 1.71 mSv, females 1.82 mSv (less for distal stones)

Preminger et al. J Urology. March 2012. Lipkin et al. J Urol 2015; 194: 878-885

Exposure from Imaging

Modality	Exposure	LDCT for BMI < 30kg/m ²
Conventional NCCT	10-20 mSv	
Stone protocol NCCT	3.04 mSv	
Low dose CT	1.40-1.97 mSv	NCCT for BMI > 30kg/m ²
Ultralow dose CT	< 1 mSv	
KUB	0.63-1.1 mSv	
KUB with 3 tomograms	3.93 mSv	MET FU = KUB and US
IVP	3.0 mSv	
Digital tomosynthesis	0.83 mSv	After URS or
		SWL = US alone

or with KUB

Multiple tracts

Higher BMI

Risks to the Urologist

- Radiation exposure: arises due to scatter from the beam, patient and operating table
- Lens of the eye is most radiosensitive

Stone burden

- 50 URS procedures/yr = 0.12% of max dose
- 50 PCNL/yr = 1.67% of max dose
- 10mSv of exposure increases lifetime risk of fatal cancer by 3%
- 20mSv during a year increases risk of fatal cancer to between 1:1,000 and 1:10,000

Risk of fatal malignancy in gen pop is 1:5

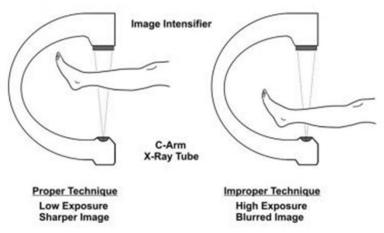
- 278 patient records analyzed
- Endpoints:

Fluoroscopy time & radiation exposure by different procedure types Fluoroscopy time & radiation exposure by different consultants For PCNL – radiation dose & time by Urology vs IR

Procedure Specific Doses

		Fluoroscopy time (sec)	Range (sec)	Fluorosc Dose (m		ange sec)
Stent pla	cement	63	0-582	1.5	0-	39.5
Stent exc	t exchange 48.5		6-346	1.2		19.6
Diagnost	ic URS	64		1.7		
Stone UF	RS	56		1.4		
Total		48	0.0-1140	0.0012	2 0-0	.0645
Left PCNL = 8.11mSvRight PCNL = 7.63 mSvPCNL AccessPCNL Procedure						
	Fluorosc Time (se				uoroscopy īme (sec)	Fluorosco Dose (m
Urologist	45.5	1.5	Urologi	st	67	1.4
IR	255	35.7	Urologi	st 1/ IR	255	21.7
IAYO JINIC			Urologi	st 2/ IR	337	28.5

What you can do


- ALARA
- Protect yourself
- Know your equipment
- Procedural control
- Alternative imaging
- Adjunctive techniques

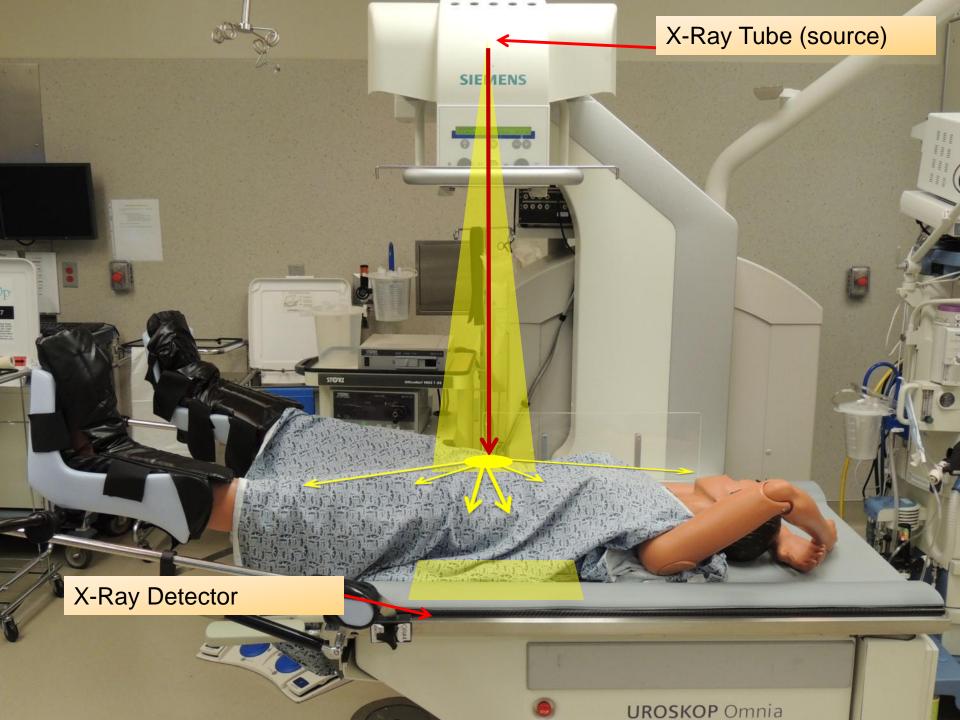
ALARA

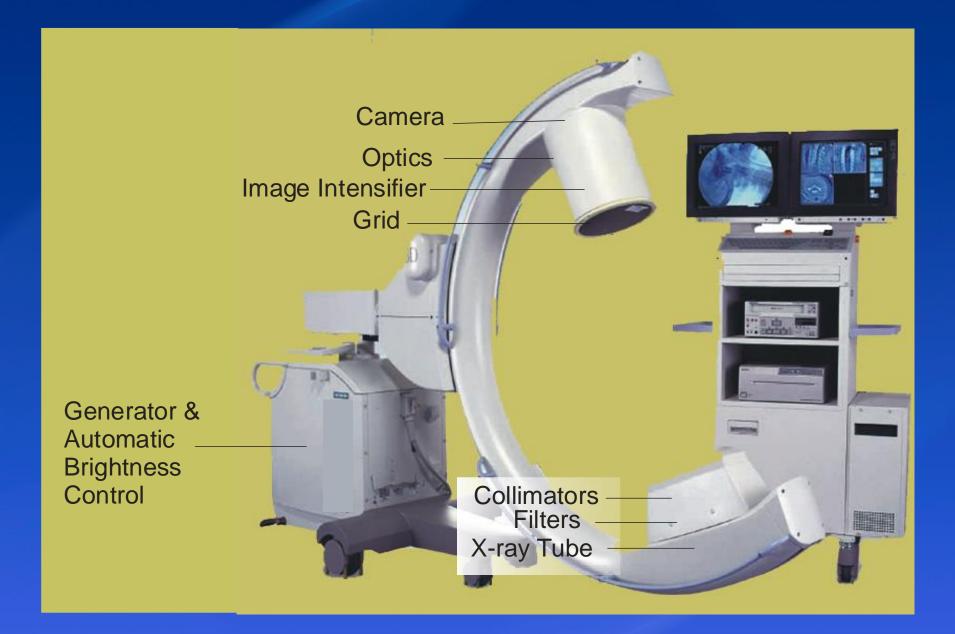
Reduce radiation exposure

- Time minimize "beam-on" time
- Distance double the distance from the source, exposure dose is 1/4th
- Shielding disposable, lightweight sterile radioprotective drape
- Scatter affected by pt size, position, settings, shielding, filtration, angulation.

Protections

- Standard lead requires 0.35mm thickness which reduces transmission by 100-fold
 - 0.25mm allow 10% of radiation transmission
 - 0.5mm allows 2% of radiation transmission
- Leaded eyewear
- Leaded gloves
- Wear dosimeters

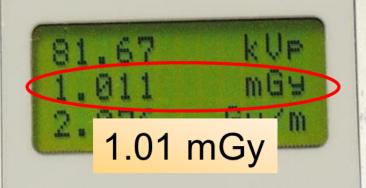




Know your equipment

- Low dose rate setting lowest pulse/sec
- Minimize use of cine mode
- Collimate the beam
- Use magnification as little as possible
- Keep field clean of radiodense objects
 - Automatic voltage increase to maintain image quality
- Image intensifier as close to pt as possible

IAEA Training Course on Radiation Protection for Doctors (non-radiologists, non-cardiologists) using Fluoroscopy L04. Anatomy of Fluoroscopy & CT Fluoroscopy Equipment


FLUORO

BLL

Over 30X more exposure!

DOSE: 1 Digital Spot

Fluoro Save

Digital Spot

Procedural control

- Mark body surface for targeting
- Coning the radiation field
- Some advocate forgoing placement of an antegrade safety wire
- Drape the patients reduces scatter
- Laser guided c-arm
- Shielding out of plane has no effect on image

Alternative imaging

Air nephrograms vs contrast

50% reduction in radiation exposure

 US – costs less, sensitivity and specificity of 45% and 88% for stone detection

- PCNL guidance
 - Reduced FT from 28.6s to 14.4s¹
 - US only no difference in SFR or complications²

- 1. Basiri A, et al. J Endourol, 22:281; 2008.
- 2. Alan C, et al. Urol Res, 39:205; 2011 kde

TABLE 1. DEMOGRAPHICS, STONE CHARACTERISTICS, AND OUTCOMES					
	$\begin{array}{c} Conventional \\ (n = 50) \end{array}$	Fluoroless (n=50)	p-Value		
Age (years) Gender	55.5 (19–95)	54.62 (16-83)	0.771 0.518		
Female Male	18 (36%) 32 (64%)	15 (30%) 35 (70%)			
BMI ASA	28.03 (17–51) 2.47	30.19 (19–67) 2.43	$0.620 \\ 0.918$		
Location Kidney	3(6%)	17 (34%)	0.002		
Proximal Mid Distal	8 (16%) 9 (18%) 21 (42%)	5 (10%) 2 (4%) 14 (28%)	0.405 0.035 0.237		
Multiple Stone area (mm ²)	9 (18%)	12 (24%)	0.513		
Laterality Right	26	25	0.689		
Left Previous stent	24	25	0.387		
Fluoroscopy time (seconds)	13 (26%) 38.8 (5–156)	18 (36%) 0	< 0.001		
Mean operative time (minutes)	60.59 (25-120)	59.20 (25-121)	0.806		
Stone-free rate Postoperative complications	46 (92%) 2 (4%)	46 (92%) 2 (4%)	1.000		
Repeat procedure	2 (4%)	4 (8%)	0.678		

TABLE 1. DEMOGRAPHICS, STONE CHARACTERISTICS,

MAYO CLINIC Þ

If all else fails....

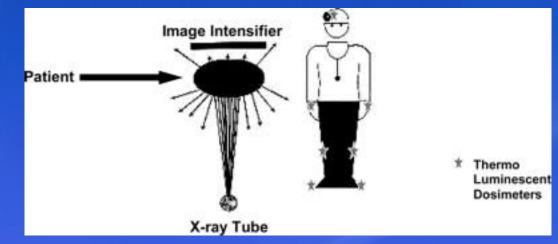
@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Opportunities to Intervene

• While you can.....

PCNL

	Number pts	Dose (mGy)	Fluoro time (s)	
Sierra-Diaz	34	9.71	58.3	
	348	452	96	


Sierra-Diaz E, et al. Dose Response 2018.

Radiation Exposure and the Urologist: What are the Risks?

- 4-month period, 18 ureteral procedures
- Average fluoroscopy time 78 seconds
- Mobile c-arm unit with under table x-ray tube
- Dosimetry 7 positions on body
 - Forehead, little fingers, anterior legs, upper aspect of the foot/ankle

Hellawell et al. J of Urol. 2005; 174:948-952.

Radiation Exposure and the Urologist: What are the Risks?

	Surgeon		Assistant		Nurse	
	TLD	Calc	TLD	Calc	TLD	Calc
General ureteral procedures						
Eye (head)	1.9 ± 0.5	3.5	3.2 ± 0.8	2.4	0.8 ± 0.2	1.3
Hand	27+07	10.0	2.1 ± 0.5	6.9	13+03	2.5
Lower leg	11.6 ± 2.9	13.0	8.3 ± 2.1	9.0	0.8 ± 0.2	3.7
Foot	6.4 ± 1.6	13.0	5.7 ± 1.4	9.0	0.5 ± 0.1	3.7
PCNL procedures						
Eye (head)	40 ± 10	73	68 ± 17	51	16 ± 4*	27
Hand	48 ± 12	177	37 ± 9	123	24 ± 6*	44
Lower leg	167 ± 42	186	120 ± 30	130	11 ± 3*	57
Foot	93 ± 23	186	82 ± 21	130	8 ± 2*	57

Average scattered radiation dose in μ Gy per case

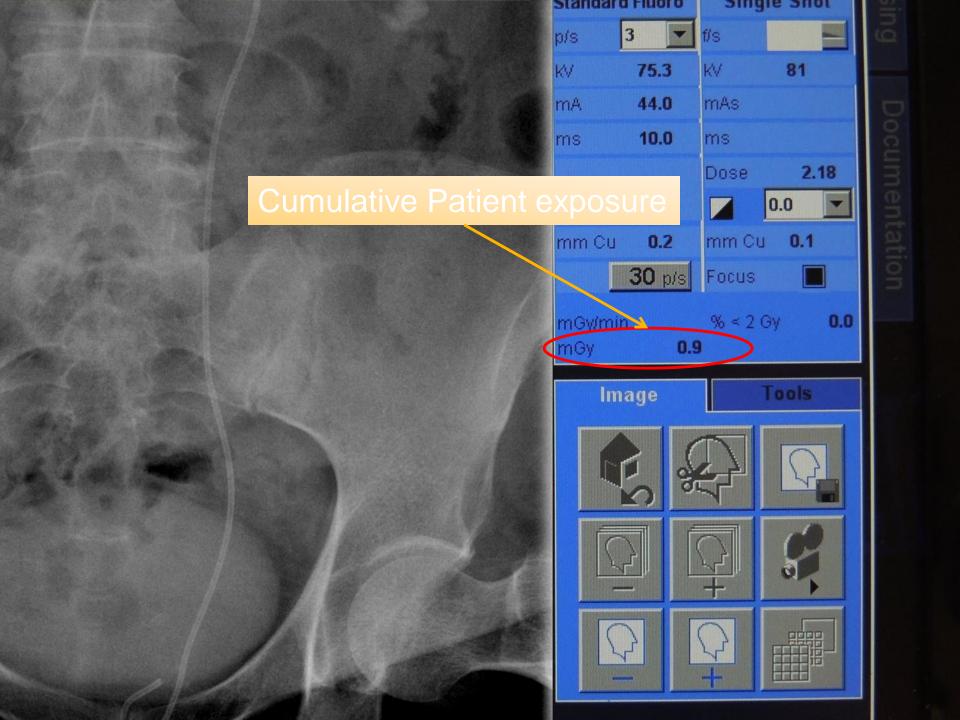
* Extrapolated from ureteral procedure TLD data.

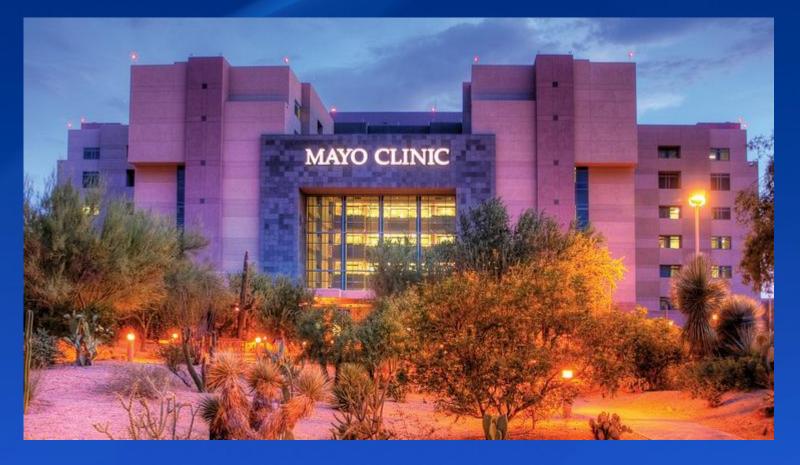
1184 urology residents in Europe surveyed 124 returned Only 75% residents routinely wear lead aprons

Only 30.6% "always" wear

MAYO CLINIC

Baldwin DD. Urology 2013. Soylemez H, et al. Urology 2013


thyroid shields


©2014 MFMER | slide-38

What can we do?

97.8% have hard images for Qreads
Median # 3.0
Range 1.0 – 15.0

Fluoro Save

Digital Spot

Overhead Controls

SIEMENS

Selected ACSS 0.2 mm Cu 16.5 in × 16.5 in

#

#

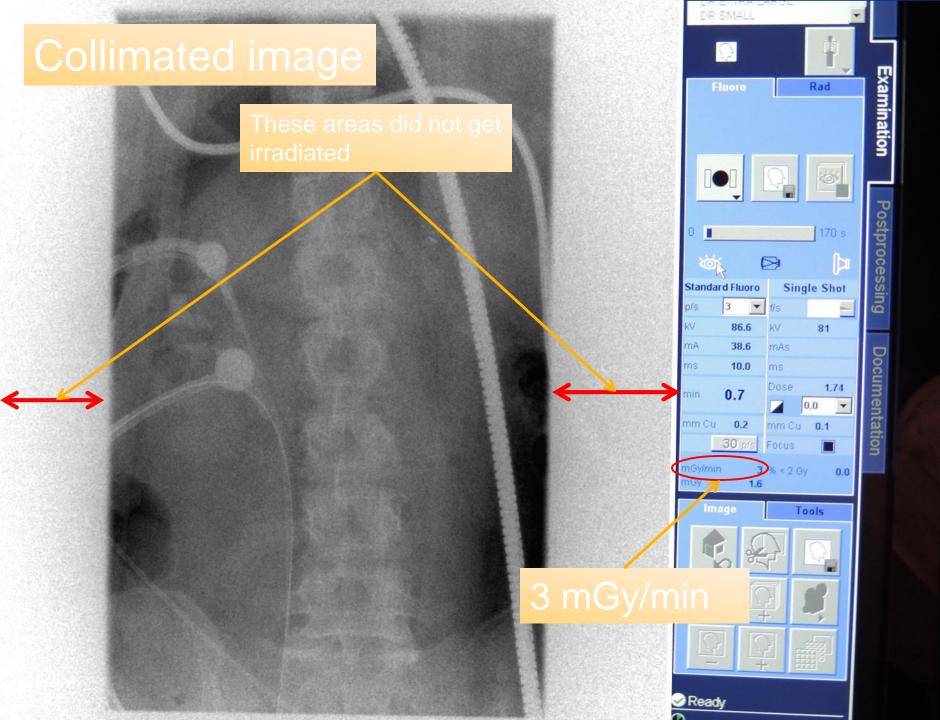
0

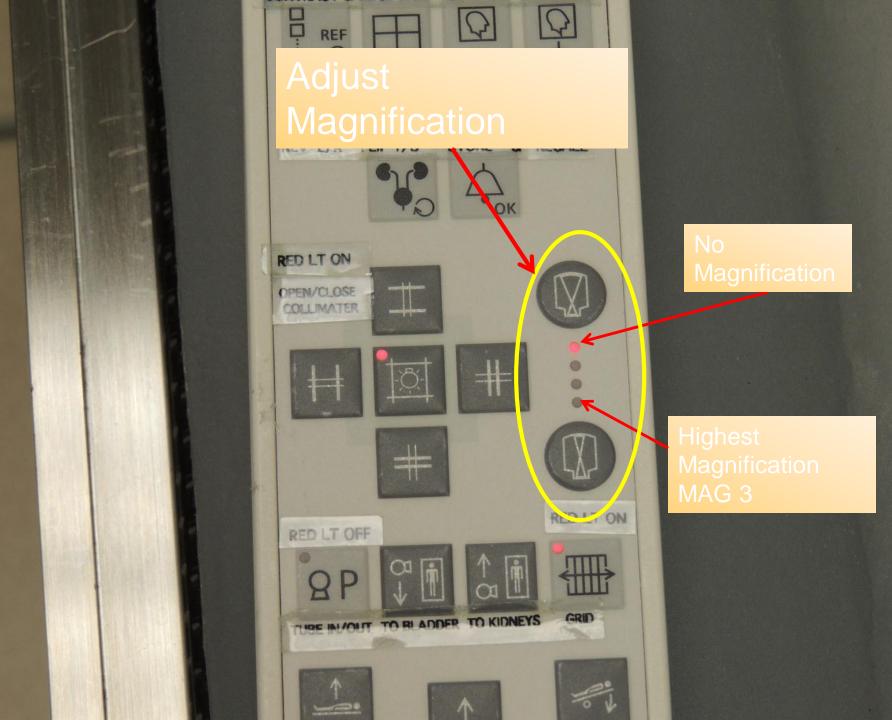
Collimation

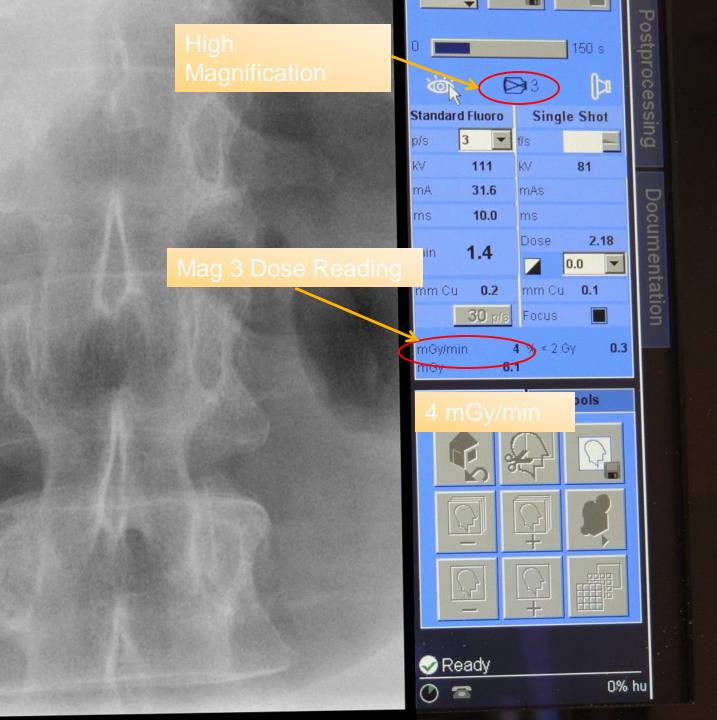
9

Collimation

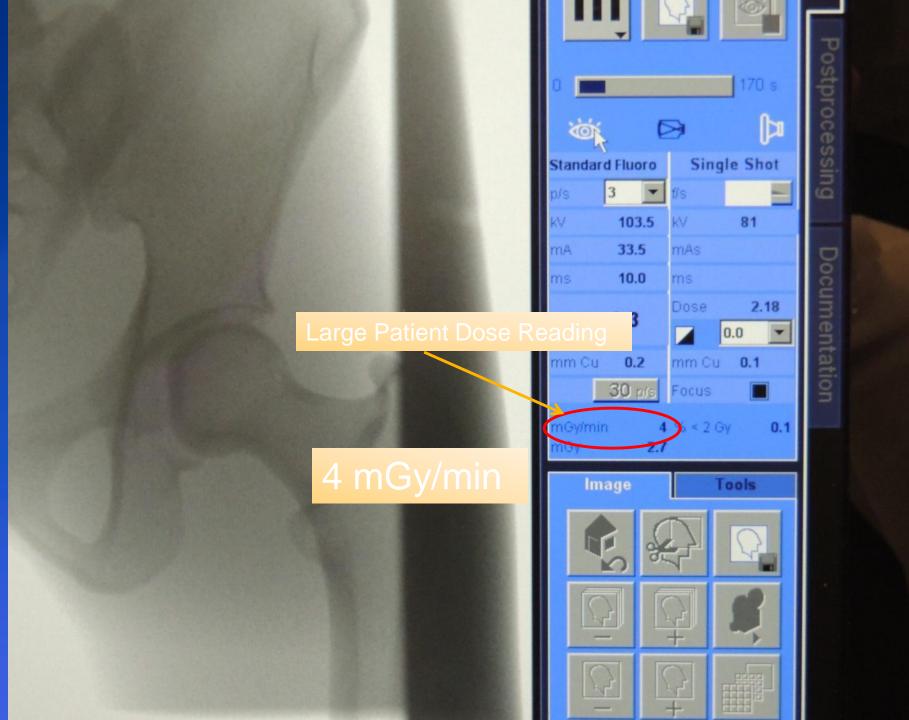
45.7 in


#


Hand Remote controls

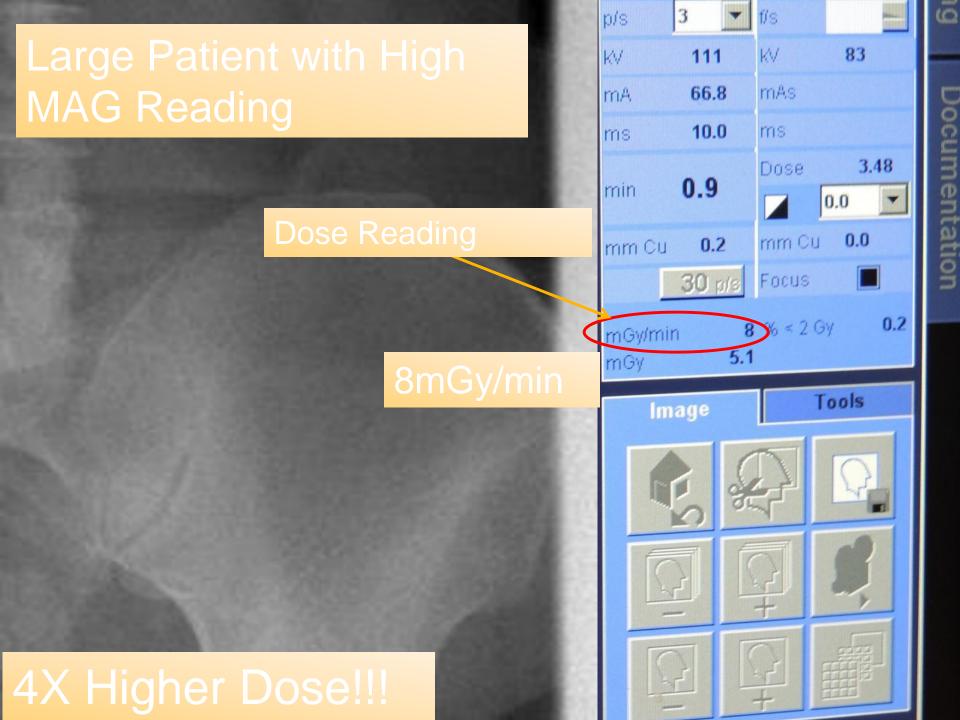

Adjust collimation

SIEMENS



STORZ

1.3 12 51 3 3 5 3


SIEMENS

SHEMICKS SIENIENS STORZ

LIROSKOP Omnia

