

"Stone-free," now what?

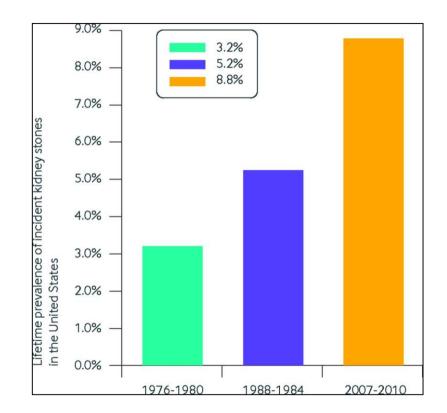
A retrospective review of patients following stone free status

Wang B, Assmus M*, Dean N, De S, Schuler T, Wollin T

Department of Surgery, Division of Urology, Edmonton, Alberta, Canada

74th Annual Meeting Quebec, QC, June 29 - July 1, 2019

Potential Conflict of Interest Disclosure


Speaker /Chair Name	Advisory Boards	Speaker's Bureau	Payment/H onoraria	Grants/ Research Support	Clinical Trials	Investments	Patents
Betty Wang				None			
Mark Assmus				None			
Nicholas Dean				None			
Shubha De				None			
Trevor Schuler				None			
Timothy Wollin				None			

Rising Incidence

Prevalence of stone disease in North America has increased, with a decreasing M:F ratio.

How has the recurrence rate changed over the last 30 years?

Stone Recurrence

Historic data quoted 50% of <u>all-comers</u> presenting with a symptomatic stone episode will have a second episode within 5-8 years.

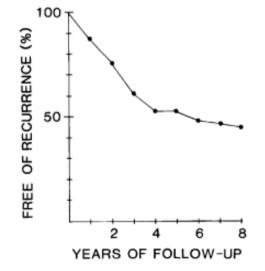
What about patients with low stone burden?

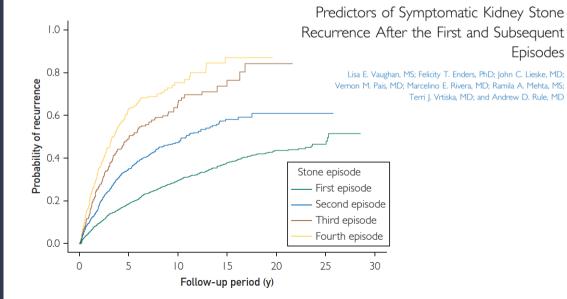
British Journal of Urology (1984), 56, 122-124 © 1984 British Association of Urological Surgeons

A Prospective Study of Renal Stone Recurrences

S. LJUNGHALL and B. G. DANIELSON

Department of Internal Medicine, University Hospital, Uppsala, Sweden




Fig. Percentage of patients free of recurrence after their first renal stone in relation to time of follow-up.

ROKS Nomograms

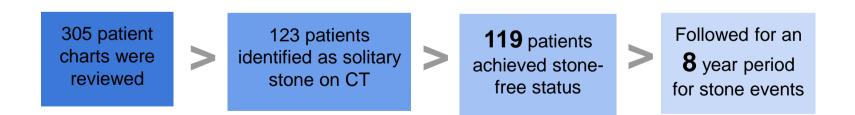
- 27 candidate predictors (patient, history and imaging factors) for subsequent events
- >25% of stone events had no imaging data

Predictor	All Stone Formers (n=2239, C Statistic=0.661)		
	Hazard Ratio (95% CI)	<i>P</i> Value	
Age, per decade	0.89 (0.84 to 0.94)	< 0.001	
Male sex	1.29 (1.09 to 1.52)	0.003	
White	1.32 (0.97 to 1.80)	0.07	
Family history of stones	1.57 (1.34 to 1.86)	< 0.001	
Prior asymptomatic stone on past imaging	1.34 (0.99 to 1.81)	0.06	
Prior suspected stone episode ^a	1.93 (1.51 to 2.46)	< 0.001	
Gross hematuria	1.08 (0.90 to 1.29)	0.42	
Any nonobstructing stone	1.66 (1.41 to 1.94)	< 0.001	
Symptomatic pelvic or lower-pole stone	2.02 (1.67 to 2.45)	< 0.001	
Symptomatic ureterovesicular junction stone	0.87 (0.73 to 1.04)	0.12	
Any known uric acid composition	2.37 (1.60 to 3.50)	< 0.001	

Objectives

- Evaluate the stone event rate (SER) for low stone-burden patients presenting with a single symptomatic urinary tract calculi who later achieved stone-free status
- 2. Detect differences in the SER by patient characteristics: First time stone formers [FS] VS. Recurrent stone formers [RS]

Methods


- Retrospective review: **119** adult stone patients
- Data Integration and Management Repository (DIMR)
 - Baseline demographics, stone burden on CT, and 8-year outcomes were added to an encrypted REDCap database
- Symptomatic Stone Event defined as:
 - a. Emergency department renal colic visit,
 - b. Urology stone consultation
 - c. Surgical intervention (URS, SWL, PCNL, or stent insertion for septic stone)
- 2-tailed t-test & Fisher's exact, with p<0.05 significant

Data Collection

Inclusion criteria:

- Adult stone patients (age >18), in Edmonton AB
- Seen by 1 of 4 urologists (TW, TS, MH, NJ), from April Sept 2009
- Presenting with solitary stone seen on CT, later became stone-free
 - via surgical treatment, or spontaneous passage

Patient Characteristics

Characteristic	Male	Female	Total
# of patients (%)	70 (59%)	49 (41%)	119 (100%)
Mean age at consult (range)	56 (27-80)	54 (18-94)	55 (18-94)
# of first time stone formers (%)	52 (74%)	28 (57%)	80 (67%)
# of recurrent stone formers (%)	18 (26%)	21 (43%)	39 (33%)

SER within 8 years

Outcome	Entire Cohort
% with symptomatic stone event	29% (34/119)
% seen in emergency department	19% (23/119)
% seen in urology clinic	22% (26/119)
% requiring subsequent OR	20% (24/119)

SER for First-Time Stone Formers (FS) vs. Recurrent (RS) within 8yr

Outcome	FS	RS	p-value
% with symptomatic stone event	<mark>21%</mark> (17/80)	<mark>44%</mark> (17/39)	p=0.02
% seen in emergency department	13% (10/80)	33% (13/39)	p=0.01
% seen in urology clinic	15% (12/80)	36% (14/39)	p=0.02
% requiring subsequent OR	14% (11/80)	33% (13/39)	p=0.01

Conclusions

At our center,

- 3 of 10 low stone burden patients will have at least 1 stone event within 8 years
- 1 in 5 will require subsequent operations
- First time stone formers have a lower SER at 21%, compared to recurrent formers (44%)

Strengths

- Everyone had reviewable CT at consult
- Patients initially achieved complete stone free status
 - SER outcomes in our care model represent an accurate assessment of ED visits and peripheral center stone events
- Minimal migration/loss to follow up

Limitations

- Intra-observer variability in stone measurement/assessments of location
- No defined stone burden staging system
- No standard post-operative imaging modality/frequency
- Results are conservative estimates

Future Direction

- To further quantify SER for patients with varying degrees of stone burden
- Build a prospective database to determine optimal timing and imaging modalities for follow up
- Develop a prototype clinically useful stoneburden classification system

