Demonstration of an Effective Ultra Low Dose CT Protocol with Lower Radiation Dose than Abdominal X-Ray

Kymora B. Scotland, Jean Buckley, James Nugent, Savvas Nicolaou, Charles Zwirewich, Patrick McLaughlin, Ben Chew
I have no conflict of interest to disclose
How do we identify calculi?

The problem:
• Need for effective imaging
• Need to minimize radiation exposure

The traditional modality options:
• Non contrast CT A/P
• Low dose CT (CT-KUB)
• KUB abdominal X-ray
How do we identify calculi?

The problem:

• Need for effective imaging
• Need to minimize radiation exposure

Novel modality:

Ultra low dose CT (ULDCT)
How does ULDCT compare to KUB?

Issues of concern:
- Quality degraded CT examination
- Negative predictive value of CT is reduced

Hypothesis: ULDCT superior to KUB at:
- Detecting symptomatic calculi
- Lower radiation exposure

Methods:

- Prospectively recruited 104 patients

- Pre-procedure
 - Abdominal Radiograph
 - Ultralow dose CT (ULDCT)

- Exclusions
 1. BMI >30
 2. Conventional Dose CT <100 days

83 patients included in study
Patient demographics

- 83 patients included in study

- Prevalence of calculi
 - 100%

- 41 Ureteric Calculi
 - 14 with hydronephrosis
 - Size 7.7±3.6mm

- 234 Renal Calculi
 - Majority measuring less than 2mm
Identification of calculi is superior in ULDCT

KUB 0.54±0.11 mSv ULDCT 0.28±0.08 mSv CT 6.06±3.08 mSv
KUB abdominal radiograph

<table>
<thead>
<tr>
<th></th>
<th>True Positive</th>
<th>False Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Negative</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>False Negative</td>
<td>8</td>
<td>39</td>
</tr>
</tbody>
</table>

6 measuring >5mm

Diagnostic Performance

- **PPV** = 83%
- **NPV** = 92%
- **Sensitivity** = 80%
- **Specificity** = 93%
ULDCT 48% lower radiation dose than KUB

KUB 0.64 mSv
ULDCT 0.31 mSv
CT 9.3 mSv
Ultra Low Dose CT

<table>
<thead>
<tr>
<th></th>
<th>True Positive</th>
<th>False Positive</th>
<th>True Negative</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>39</td>
<td>1</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>Both measure <2mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic Performance
- PPV = 98%
- NPV = 95%
- Sensitivity = 95%
- Specificity = 98%
Conclusions

• ULDCT has significantly greater:
 o Sensitivity, Specificity, PPV, NPV
 o ~50% effective dose of a KUB

• ULDCT use would significantly reduce lifetime radiation exposure

• Limitations
 o Poor identification of sub 2mm calculi
 o Increased demands to review
Thank You!

Questions?
Initial Presentation

Non-contrast CT abdomen and pelvis/KUB* Standard protocol

- Abdominal / Flank / Back Pain

 - BMI < 30
 - Yes: Non-contrast CT abdomen and pelvis/KUB* Low dose protocol**
 - Yes: Ureteral calculus
 - No: Further workup for etiology of symptoms as indicated
 - No: Report:
 - Stone size
 - Stone location
 - Stone Attenuation
 - Skin to stone distance
 - Hydro nephrosis
 - Congenital anomalies
 - Extravasation
 - Stranding

 - Yes: Management Per AUA Guidelines

 - Definitive Interventional Management
 - Observation / Medical Management

Exceptions:
- Known radio-opaque stone former
- Contrast allergy
- Renal insufficiency
- Pregnancy (ACOG)
- Pediatric patients

* KUB is obtained if stone is not seen on CT scout film
** Low dose protocol not recommended for patients with BMI>30

Recommendation

<table>
<thead>
<tr>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>A</td>
</tr>
</tbody>
</table>

NCCT should be used to confirm stone diagnosis in patients with acute flank pain, because it is superior to IVU (10).

NCCT can detect uric acid and xanthine stones, which are radiolucent on plain films, but not indinavir stones.
Radiation

• Per capita annual effective dose from CT:*
 USA 0.5 mSv in 1982
 3.0 mSv in 2006 (6x)
 Canada 0.19 mSv in 1991
 0.74 mSv in 2006 (3.9x)

• ED CT use in renal colic increased 7-12x 1996-2008**

• 79% evaluated for renal colic in ED underwent ≥2 CT, with median dose of 14.5 mSv***

*Chen J, J Radiol Prot 2010
**Dalziel JD, Emerg Med J 2013
MDCT dose: How low can we go? ALARA

- Ultra-low dose scanning possible with use of low noise detectors and iterative & model-based reconstruction
- Patient selection key