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Objectives

e Understand the basic principles of Al
e Review the applications of Al in medicine

e Understand the potential bias and limitations of Al



How does it work?

A five minutes crash course -- buckle up
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Types of Al

Specific
This 1s where we are, as of today. Very powerful but very narrow expertise.
1.e. : Hand written letters and digits recognition, play the game of Go.
General
Generalization of expertise across different fields, reasoning, arguing.

Human level intelligence.



Types of Al

Super
Reasoning capacity looks like magic to us
Combined intellect of the entire human race and more

Your guess is as good as mine






Types of machine (self) learning

Supervised — The targets are known and labeled ( common )
Unsupervised — The targets are determined by the algorithm
Reinforcement — Reward based (+ or - )

Deep learning — Uses multi layered and complex artificial neural networks architecture (
this structure can be used for any form of learning™)

Others ( semi-supervised, one-shot-learning, One-shot-semi-supervised, deep-RL ... )



This is simply heartbreaking. | have a huge respect for Lee Sedol, not only one
of the best Go players of all time, but also the one who accepted the challenge
from Deepmind to play against AlphaGo not 50 long 3go. He got beaten and it
was a huge milestone in the history of artificial inteligence but his retirement

from professional o comes as a surprise

Thinking about loud here. Is this what we can expect 10 see n medicine too?
When the first advanced algorithms using reinforcement learning start coming
!

up with cures and new treatments without explanation, professors will just retire
to avoid embarrassment?
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What can it do?

( other than Chess, Go and Atari )

Current applications in medicine
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Dermatology
Identification of melanoma with perfect NPV

Radiology
COVID detection in chest CT scans in China
Radio-oncology treatment planning - increase in efficiency

Laboratory
Cellular count and urine analysis

EMR (Epic)
Decision making in real time based on clinical notes and lab reviews using models and NLP

Pharmacology
Drug design (COVID designer particles)
Vaccine mRNA - protein folding prediction ( 1000x decrease in computation time )

Triage EMS --Predicting need for critical care:
The Al algorithm accurately predicted the need for the critical care of patients using information
during EMS and outperformed the conventional triage tools and early warning scores.



Ptis 87 yo woman, highschool teacher with past medical history that includes

age (87) ® Profession (highschool teacher)
Overlap <+~ > Overlap
A
- status post cardiac catheterization in April 2019.
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Dermatologist-level
classification of skin cancer

An artificial intelligence trained to classify images of skin lesions as benign
lesions or malignant skin cancers achieves the accuracy of board-certified

dermatologists.

In this work, we pretrain a deep neural network at general object recognition, then fine-
tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.

FULL NATURE ARTICLE >

OPEN-ACCESS PDF »



What are the main challenges



Top Challenges

A challenge solved brings a new one to the table
5 important aspects, each a prior to the other

Especially true for algorithms using deep learning



Interoperability
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Solving EHRSs problem

Naming convention ( FHIR, DICOM, HL7, SNOMED )
Should be part of the accreditation of EHR

APIs -- one rule to connect them all



Data Access and Privacy



Who and how?

Al is already commoditized by big corporations.
How will we give the power back to the patient?
What are the current data pipelines in place?

Who will benefit from the access to raw data?



Bias



Amazon Reportedly Killed
an Al Recruitment System
Because It Couldn’t Stop
the Tool from
Discriminating Against
Women

8Y DAVID MEYER



Is there a gold standard?

None-deterministic and complex outcomes are mostly biased

Culture bias, population bias, organizational bias — Supervised algorithms are only
as good as the data provided.

Interobserver agreement and performance expectations



Explainability



Doctor, can you explain why I can go home now?

Visualizing the weights for 1-layer CIFAR-10 classifier




Major challenge

Mostly for deep learning algorithms
Lots of research in the field. The black box is more or less grey now.
Human mind is a perfect example of a black box - but we are self aware

Relevant in decision making



Liability



Liability issues

If there is no human in the decision process and a medical facility uses an algorithm,
that facility would be liable if an harm causing mistake occurs.

Think of medical tools - they have performance metrics. Same goes with Al
Importance of validation studies
Augmented intelligence and human in the loop Al

Al team member concept



Summary

Many algorithms are used in artificial intelligence in order to solve a problem
We mostly use specific Al and we are far from general or super intelligence
Al is applied everywhere in our daily lives and is vastly used in medicine

Explainability will be a tough challenge to solve in medicine



Thanks!
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