AI in Medicine: Technology and challenges

Julien Martel - CHUM md, CCMF(mu) Data Scientist

Disclosure

Speaker has no conflict of interest

Objectives

- Understand the basic principles of AI
- Review the applications of AI in medicine
- Understand the potential bias and limitations of AI

How does it work?

A five minutes crash course -- buckle up

Turing test How to differentiate a human from a machine	First ANN	Perceptron First ANN Shoebox (1961) Virtual Assistant		HEARSAY Voice recognition MYCIN Diagnosis and treatment of bacterial infections		Google Indexation Web			Virtual Assistants Virtual Assistant Boom	
1950 1956	1960	1966	1972	1989	1991	1997	1998	2005	2010	2017
	Dartmouth Birth of the name AI		ELIZA Chatbot - The Doctor's Script Shakey Robot combines NLP and computer vision		LeNet Yann LeCun Postal codes		DeepBlue Kasparov loses!		nomous win the ce	AlphaGo Zero ^{RL}

Types of AI

Specific

This is where we are, as of today. Very powerful but very narrow expertise.

i.e. : Hand written letters and digits recognition, play the game of Go.

General

Generalization of expertise across different fields, reasoning, arguing.

Human level intelligence.

Types of AI

Super

Reasoning capacity looks like magic to us

Combined intellect of the entire human race and more

Your guess is as good as mine

Types of machine (self) learning

Supervised \rightarrow The targets are known and labeled (common)

Unsupervised \rightarrow The targets are determined by the algorithm

Reinforcement \rightarrow Reward based (+ or -)

Deep learning \rightarrow Uses multi layered and complex artificial neural networks architecture (this structure can be used for any form of learning*)

Others (semi-supervised, one-shot-learning, One-shot-semi-supervised, deep-RL ...)

-

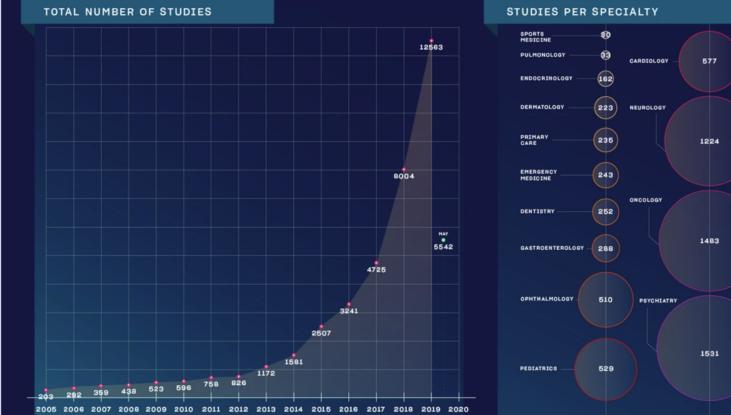
This is simply heartbreaking. I have a huge respect for Lee Sedol, not only one of the best Go players of all time, but also the one who accepted the challenge from Deepmind to play against AlphaGo not so long ago. He got beaten and it was a huge milestone in the history of artificial intelligence but his retirement from professional go comes as a surprise.

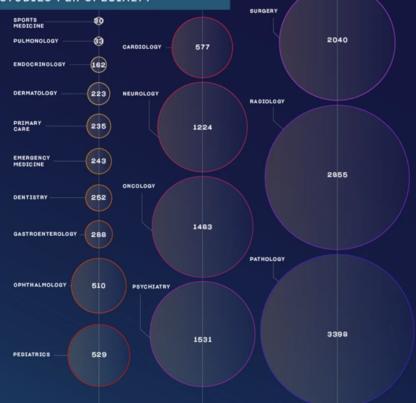
Thinking about loud here. Is this what we can expect to see in medicine too? When the first advanced algorithms using reinforcement learning start coming up with cures and new treatments without explanation, professors will just retire to avoid embarrassment?

#themedicalfuturist #digitalhealth #future #healthcare #medicine #technology #AI #artificialintelligence #chess #deeplearning #machinelearning #TMFchessjourney

Former Go champion beaten by DeepMind retires after declaring AI invincible

theverge.com


😋 🚯 🧕 160 · 38 Comments


What can it do?

(other than Chess, Go and Atari)

Current applications in medicine

b MACHINE AND DEEP LEARNING STUDIES ON PUBMED.COM

Dermatology

Identification of melanoma with perfect NPV

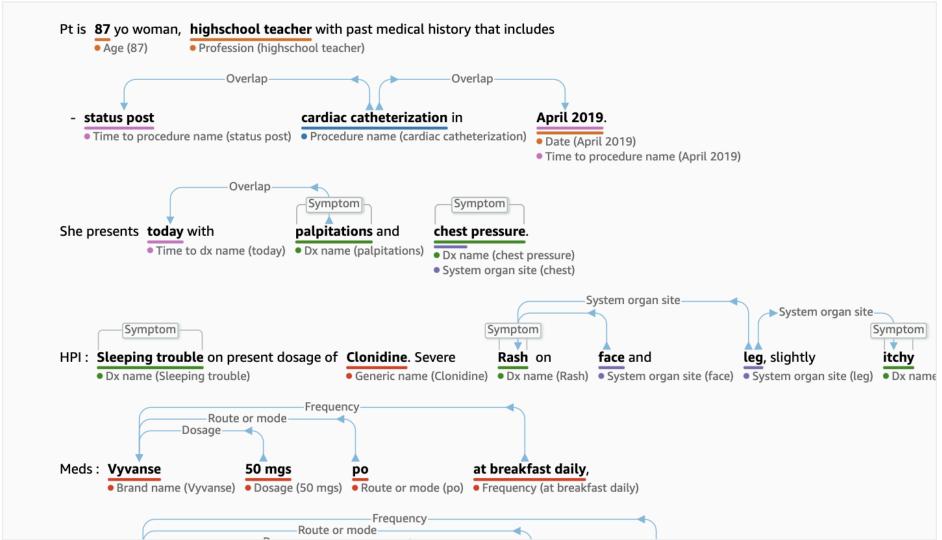
Radiology

COVID detection in chest CT scans in China Radio-oncology treatment planning - increase in efficiency

Laboratory

Cellular count and urine analysis

EMR (Epic)


Decision making in real time based on clinical notes and lab reviews using models and NLP

Pharmacology

Drug design (COVID designer particles) Vaccine mRNA - protein folding prediction (1000x decrease in computation time)

Triage EMS -- Predicting need for critical care:

The AI algorithm accurately predicted the need for the critical care of patients using information during EMS and outperformed the conventional triage tools and early warning scores.

Dermatologist-level classification of skin cancer

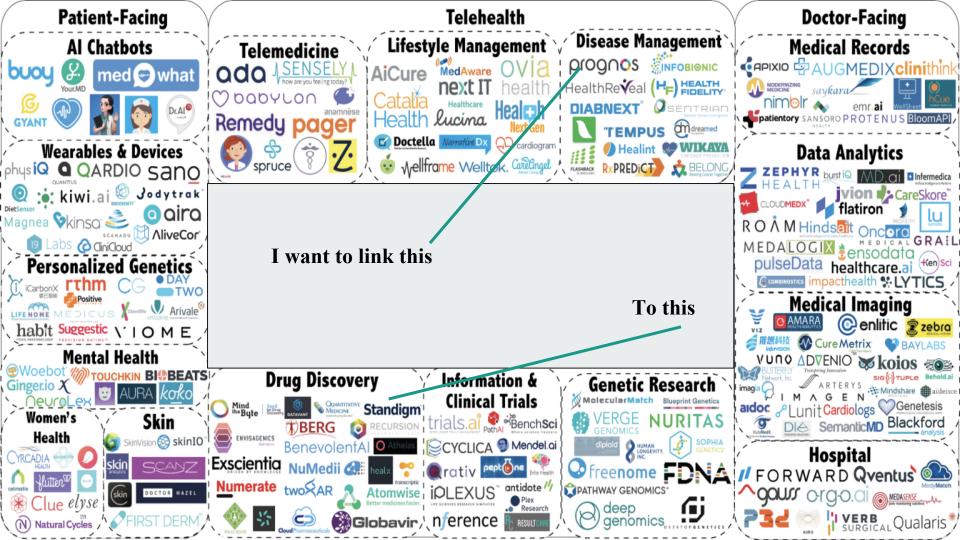
An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified dermatologists.

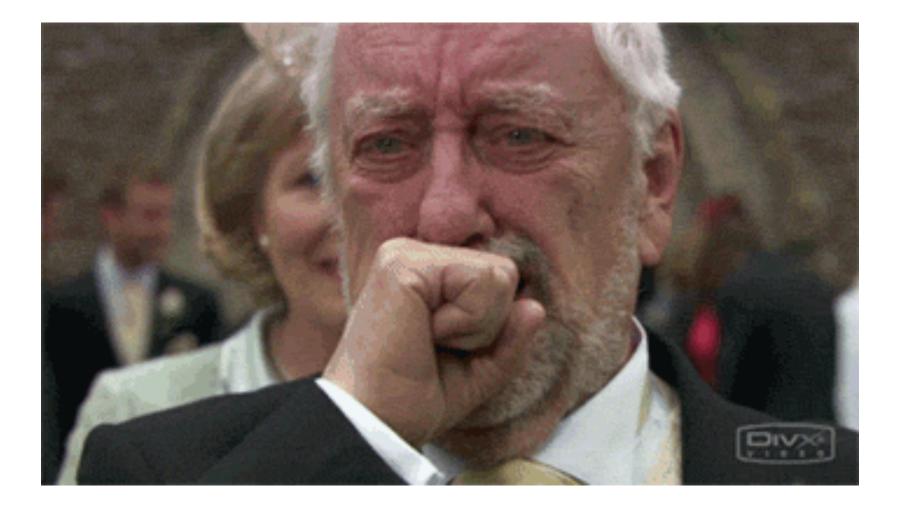
In this work, we pretrain a deep neural network at general object recognition, then finetune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.

FULL NATURE ARTICLE \rightarrow

open-access pdf \rightarrow

What are the main challenges


Top Challenges


A challenge solved brings a new one to the table

5 important aspects, each a prior to the other

Especially true for algorithms using deep learning

Interoperability

Solving EHRs problem

Naming convention (FHIR, DICOM, HL7, SNOMED)

Should be part of the accreditation of EHR

APIs -- one rule to connect them all

Data Access and Privacy

Who and how?

AI is already commoditized by big corporations.

How will we give the power back to the patient?

What are the current data pipelines in place?

Who will benefit from the access to raw data?

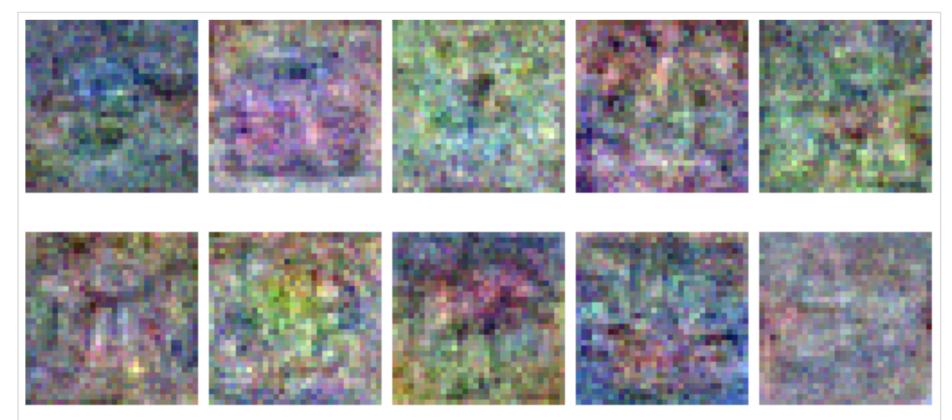
Bias

Amazon Reportedly Killed an AI Recruitment System **Because It Couldn't Stop** the Tool from **Discriminating Against** Women

BY DAVID MEYER

October 10, 2018 6:00 AM EST

Is there a gold standard?


None-deterministic and complex outcomes are mostly biased

Culture bias, population bias, organizational bias \rightarrow Supervised algorithms are only as good as the data provided.

Interobserver agreement and performance expectations

Explainability

Doctor, can you explain why I can go home now?

Visualizing the weights for 1-layer CIFAR-10 classifier

Major challenge

Mostly for deep learning algorithms

Lots of research in the field. The black box is more or less grey now.

Human mind is a perfect example of a black box - but we are self aware

Relevant in decision making

Liability

Liability issues

If there is no human in the decision process and a medical facility uses an algorithm, that facility would be liable if an harm causing mistake occurs.

Think of medical tools - they have performance metrics. Same goes with AI

Importance of validation studies

Augmented intelligence and human in the loop AI

AI team member concept

Summary

Many algorithms are used in artificial intelligence in order to solve a problem We mostly use specific AI and we are far from general or super intelligence AI is applied everywhere in our daily lives and is vastly used in medicine Explainability will be a tough challenge to solve in medicine

Thanks!

References

Meskó, B., Görög, M. A short guide for medical professionals in the era of artificial intelligence. *npj Digit. Med.* 3, 126 (2020). <u>https://doi.org/10.1038/s41746-020-00333-z</u>

Kang, D. Y. et al. Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. *Scand. J. Trauma Resusc. Emerg. Med.* 28, 17 (2020).

Panch, T., Mattie, H. & Celi, L. A. The "inconvenient truth" about AI in healthcare. npj Digit Med. 2, 77 (2019).

World Health Organization. Big data and artificial intelligence. https://www.who.int/ethics/topics/big-data-artificial-intelligence/en/.

Fornell, D. Artificial intelligence greatly speeds radiation therapy treatment planning. itnonline.com. https://www.itnonline.com/article/artificial-intelligence-greatly-speeds-radiation-therapy-treatment-planning (2020). Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat. Methods. 15, 234-235 (2018).

Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. *Nat. Med.* 25, 44–56 (2019).