Choosing Antibiotics Wisely

Todd C. Lee MD MPH FIDSA
Associate Professor of Medicine
McGill University
November 30, 2020
DISCLOSURE OF CONFLICT OF INTEREST

<table>
<thead>
<tr>
<th>Nature of relationship(s) (over previous 2-years)</th>
<th>Y/N</th>
<th>Company/Organization</th>
<th>Description of relationship(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Member of an Advisory Board or equivalent with a commercial organization.</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Member of a Speakers bureau.</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Received payment from a commercial organization. (including gifts or other consideration or ‘in kind’ compensation)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D Received a grant(s) or an honorarium from a commercial organization.</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Hold a patent for a product referred to in the CME/CPD program or that is marketed by a commercial organization.</td>
<td>YES</td>
<td>MedSafer</td>
<td>Copyright Holder, Marketed Product</td>
</tr>
<tr>
<td>F Hold investments in a pharmaceutical organization, medical devices company or communications firm.</td>
<td>??</td>
<td>Mutual Funds / ETFs</td>
<td>I may hold these investments – don’t know</td>
</tr>
<tr>
<td>G Currently participating in or have participated in a clinical trial within the past two years.</td>
<td>YES</td>
<td>CIHR, Canadian Frailty Network, Centre for Aging and Brain Health Innovation</td>
<td>Principal Investigator, Co-Investigator</td>
</tr>
</tbody>
</table>
Note

- Despite the title of the talk and the highlighting of some of their free materials, I have little ongoing relationship with Choosing Wisely Canada and do not represent them.

- I was a co-author of the AMMI Canada Choosing Wisely declarative statements for infectious diseases.
As a result of attending this session, participants will be able to:

1) Recognize opportunities to avoid the use of antibiotics for non-bacterial diseases
2) Feel empowered to use narrower spectrum therapy
3) Know drugs which maximize use of the oral route
4) Be aware of the evidence in favor or short(er) course therapies
The Use of Antibiotics

Indicated and beneficial antibiotics

ANTIBIOTIC OVERLOAD

- Antibiotics given for diseases which are not due to bacteria
- Antibiotics which are unnecessarily broad for the condition being treated
- Antibiotics by the vein when mouth will do
- Antibiotics given for too long
Why does it matter?

- Antibiotics can have consequences
 - CDI
 - Interactions
 - Adverse Drug Events
- Antibiotics cost money
- Antibiotic resistant organisms are a modern reality
 - Their societal and individual prevalence is a function of exposure
What can be done about Antibiotic Overload?

- Enter the concept of the “Antibiotic Stewardship”
- Optimizing:
 - Selection of spectrum
 - Dose
 - Route
 - Duration
- To MAXIMIZE clinical cure or prevention of infection
Case 1

- 40M presents with 3 days of stuffy nose and bothersome sinus pain with yellow phlegm. No fever.
- “Antibiotics worked last time”
Case 1

A) Amoxicillin
B) Saline rinses and supportive care
C) Ciprofloxacin
D) Doxycycline
Section 1: Antibiotics given for diseases which are not due to bacteria

- Most sinusitis is not bacterial
- Respiratory symptoms in the era of virus detection – is there a role for additional testing?
- “Pyuria” or “Bacteriuria”
Treating Sinus Infections:
Don’t rush to antibiotics

Millions of people are prescribed antibiotics each year for sinus infections, a frequent complication of the common cold, hay fever, and other respiratory allergies. In fact, 15 to 21 percent of all antibiotic prescriptions for adults in outpatient care are for treating sinus infections. Unfortunately, most of those people don’t need the drugs. Here’s why:

The drugs usually don’t help

Sinus infections can be painful. People with the condition usually have a stuffy nose combined with yellow, green, or gray nasal discharge plus pain or pressure around the eyes, cheeks, forehead, or teeth that worsens.
So when are antibiotics necessary?

They’re usually required only when symptoms last longer than a week, start to improve but then worsen again, or are very severe. Worrisome symptoms that can warrant immediate antibiotic treatment include a fever over 38.6 °C, extreme pain and tenderness over your sinuses, or signs of a skin infection, such as a hot, red rash that spreads quickly.

When you do need antibiotics, the best choice in many cases is amoxicillin, which typically costs about $4 and is just as effective as more expensive brand-name antibiotics. Note that some health care providers recommend CT scans when they suspect sinus infections. But those tests are usually necessary only if you have frequent or chronic sinus infections or you’re going to have sinus surgery.

How should you treat sinus infections?

Most people recover from sinus infections caused by colds in about a week, but several self-help steps may bring some relief sooner:

Rest. That’s especially important in the first few days when your body needs to channel its energy into fighting the virus. It also helps to elevate your head when lying down to ease postnasal drip.

Drink. Warm fluids can help thin nasal secretions and loosen phlegm.

Boost humidity. Warm, moist air from a bath, shower, or a pan of recently boiled water can loosen phlegm and soothe the throat.

Gargle. Use half a teaspoon of salt dissolved in a glass of warm water.

Rinse your nose. Saltwater sprays or nasal irrigation kits (such as Neti Pot) might make you feel better.

Use over-the-counter remedies with caution.

- Nasal drops or sprays containing oxymetazoline (such as Otrivin®, Drixoral® and genenc) can cause rebound congestion if used for longer than three days.
- The benefits of oral decongestants (such as Sudafed) rarely outweigh the risks or side effects.
- Unless significant allergies are present, it’s best to skip antihistamines since they don’t ease cold symptoms very much and can cause bad side effects.
Uncomplicated sinusitis

Don’t prescribe antibiotics unless symptoms have persisted for greater than 7-10 days without improvement.

Differentiating viral rhinosinusitis (VRS) from acute bacterial rhinosinusitis (ABRS) can be challenging. Patients not meeting the below criteria are best managed with a viral prescription. Antibiotics should only be considered if the patient has at least 2 of the below PODS symptoms, one of those being O or D, AND the patient meets one of the following criteria:

1. The symptoms are severe
2. The symptoms are mild to moderate symptoms if there is no response after a 72 hours trial with nasal corticosteroids.

P: Facial Pain/pressure/fullness; **O:** Nasal Obstruction;

D: Purulent/discolored nasal or postnasal Discharge; **S:** Hyposmia/anosmia (Smell)

Tools to Support Practice:

1. [Viral prescription pad](#)
2. [General information for kids](#)
The symptoms you presented with today suggest a VIRAL infection.

- Upper Respiratory Tract Infection (Common Cold): Lasts 7-14 days
- Flu: Lasts 7-14 days
- Acute Pharyngitis ("Sore Throat"): Lasts 3-7 days, up to ≤10 days
- Acute Bronchitis/"Chest Cold" (Cough): Lasts 7-21 days
- Acute Sinusitis ("Sinus Infection"): Lasts 7-14 days

You have not been prescribed antibiotics because antibiotics are not effective in treating viral infections. Antibiotics can cause side effects (e.g. diarrhea, yeast infections) and may cause serious harms such as severe diarrhea, allergic reactions, kidney or liver injury.

When you have a viral infection, it is very important to get plenty of rest and give your body time to fight off the virus.

If you follow these instructions, you should feel better soon:
- Rest as much as possible
- Drink plenty of fluids
- Wash your hands frequently
- Take over-the-counter medication, as advised:
 - Acetaminophen (e.g. Tylenol®) for fever and aches
 - Ibuprofen (e.g. Advil®) for fever and aches
 - Naproxen (e.g. Aleve®) for fever and aches
 - Lozenge (cough candy) for sore throat
 - Nasal Saline (e.g. SalineX®) for nasal congestion
 - Other: ____________________________

(e.g. Nasal decongestant if SalineX® does not work, for short-term use only!)

Please return to your provider if:
- Symptoms do not improve in _____ day(s), or worsen at any time
- You develop persistent fever (above 38°C or ________ as directed)
- Other: ____________________________

Prescriber
Multiplex Respiratory Virus Testing for Antimicrobial Stewardship: A Prospective Assessment of Antimicrobial Use and Clinical Outcomes Among Hospitalized Adults

Makeda Senrot,1 Ian Schiller,2 Barbara Ann Jardin,2 Charles Frenette,1 Vivian G. Leo,1 Jesse Papenburg,1 Shelly A. McNeil,4 and Nandini Dendukuri2

1Division of Infectious diseases and Medical Microbiology, Department of Medicine and Laboratories, 2Research Institute, and 3Technology Assessment Unit, McGill University Health Centre, Montreal, Quebec, and 4Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Canada

JID 2017;216 (15 October)

315 patients enrolled (hospitalized and RVP test collected)

800 patients included in analysis

Excluded:
- 81 nosocomial cases
- 37 met other exclusion criteria
- 1 missing RVP result

464 patients started empiric treatment a
(153 on antiviral, 271 on antibiotic for presumed respiratory infection or unknown focus)

336 patients did not start empiric treatment a
- Started treatment after test result (within 2 days) b
 - 79 on antiviral, 19 on antibiotic
- Did not start treatment within 2 days of test result c (210)
Multiplex Respiratory Virus Testing for Antimicrobial Stewardship: A Prospective Assessment of Antimicrobial Use and Clinical Outcomes Among Hospitalized Adults

Makeda Senrot,1 Ian Schiller,2 Barbara Ann Jardin,2 Charles Frenette,1 Vivian G. Lee,1 Jesse Papenburg,1 Shelly A. McNeil,4 and Nandini Dendekuri2

1Division of Infectious diseases and Medical Microbiology, Department of Medicine and Laboratories, 2Research Institute, and 3Technology Assessment Unit, McGill University Health Centre, Montreal, Quebec, and 4Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Canada

Table 1. Respiratory Virus Panel Findings

<table>
<thead>
<tr>
<th>Virus</th>
<th>Positive Test Results, Patients, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza A and B virus</td>
<td>425 (53)</td>
</tr>
<tr>
<td>RSV A and B</td>
<td>24 (3)</td>
</tr>
<tr>
<td>Parainfluenza virus 1–3</td>
<td>4 (0.6)</td>
</tr>
<tr>
<td>Rhinovirus/enterovirus</td>
<td>6 (0.8)</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>29 (3.6)</td>
</tr>
<tr>
<td>CoV OC43 and 229E</td>
<td>11 (1.4)</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>13 (1.6)</td>
</tr>
</tbody>
</table>

Abbreviations: CoV, coronavirus; RSV, respiratory syncytial virus.

Table 4. Change in Management of Antivirals and Antibiotics After Respiratory Virus Panel (RVP) Testing Among Patients Treated Empirically (Before Testing), by RVP Result

<table>
<thead>
<tr>
<th></th>
<th>Influenza Virus Positive</th>
<th>Other Virus Positive</th>
<th>Virus Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment, Pneumonia Suspicion</td>
<td>Antiviral Suspicion</td>
<td>Antiviral continued⁴</td>
<td>Patients</td>
</tr>
<tr>
<td></td>
<td>Antiviral Suspicion</td>
<td>Antiviral continued⁴</td>
<td>Patients</td>
</tr>
<tr>
<td>Antiviral Suspension</td>
<td>37 (79)</td>
<td>0 (0)</td>
<td>1 (69)</td>
</tr>
<tr>
<td>Antiviral continued⁴</td>
<td>81 (81)</td>
<td>1 (20)</td>
<td>6 (60)</td>
</tr>
</tbody>
</table>

Antibiotics

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Antibiotic continued⁴</th>
<th>Patients</th>
<th>Antibiotic continued⁴</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiviral Suspension</td>
<td>57</td>
<td>15</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic continued⁴</td>
<td>35 (81)</td>
<td>12 (80)</td>
<td>63 (70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No suspension</td>
<td>53</td>
<td>7</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic continued⁴</td>
<td>21 (40)</td>
<td>1 (14)</td>
<td>26 (62)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sorry, but no amount of antibiotics will get rid of your cold.
Randomized patients who presented with suspected lower respiratory tract infection where physician was “unsure” of need of antibiotics to procalcitonin testing with interpretation (n=826) vs. usual care (n=830)

Primary outcome was antibiotic use
Case 2

- 75 man awakens from sleep with crushing retrosternal chest pain, dyspnea, nausea, and a sense of impending doom
- He calls an ambulance and is taken to the emergency department of a tertiary care hospital
- On arrival he is hypertensive, afebrile and has evidence of diffuse horizontal ST segment depression in the anterior leads and his initial cardiac enzymes are positive
Case 2 – Continued

- His urinalysis (dipstick) is positive for leukocytes
- Which antibiotics should be started to treat his “urosepsis”?
 A) Ciprofloxacin
 B) Ceftriaxone
 C) Piperacillin-Tazobactam
 D) Trimethoprim-Sulfamethoxazole
 E) Other
Pyuria is sensitive but not specific for bacteriuria and UTI

- Function of pre-test probability
- Positive predictive value as low as 10% (meaning 90% false positives)
- This is a rule out test (e.g. if negative much less likely to be UTI; the converse is not true)
“If you [culture] it, he will [probably] come…”
CULTURES WITHOUT INDICATION VERY COMMON

INPATIENT CLINICAL YIELD EXTREMELY LOW (<2%)

UNNECESSARY ANTIBIOTICS IN UP TO 50%

RAISES THE QUESTION: DO THESE CULTURES DO MORE HARM THAN GOOD?
Symptom-Free Pee: LET IT BE

A national initiative to stop inappropriate antibiotic use for asymptomatic bacteriuria in long-term care residents.

For more direction and guidance:
www.ammi.ca
#SymptomFreeLetItBe

AMMI Canada
Diagnosis of Suspected Urinary tract Infection (UTI) in Non-Catheterized Elderly Patients in Acute Care Setting

PRACTICE POINTS:
- UTI is a clinical diagnosis, not a laboratory diagnosis
- Dipsticks not recommended - poor diagnostic accuracy
- Urinalysis:
 - Presence of bacteria/nitrites and/or WBC not diagnostic of UTI as common finding in the elderly
 - Absence of WBCs in urine rules out UTI
- Do not start antibiotics before urine sample collected
- > 3 organisms typically implies contamination

TYPICAL URINARY TRACT INFECTION SIGNS/SYMPTOMS:
- Acute dysuria and/or
- 2 or more of the following:
 - Fever
 - New urgency (or marked increase)
 - New frequency (or marked increase)
 - Suprapubic/flank pain
 - New urinary incontinence
 - Gross hematuria

Urinalysis
- Leukocyte esterase negative/trace/small or WBC < 5/hpf
- Leukocyte esterase moderate/large or WBC > 5/hpf
- Urine culture
 - Note: For female patient, strongly recommend in/out catheter urine
- No pathogens reported
- > 3 organisms or reported as mixed/contaminated
- 1 or 2 uropathogens with susceptibility results

UTI unlikely
- Consider alternative diagnosis
- Rehydrate/push fluids (up to 1L) for 24hrs.
- Reassess clinical condition

Contact healthcare provider if fever and/or flank pain
- Repeat with in/out catheter urine
- Rehydrate/push fluids (up to 1L) for 24hrs.

Treat for UTI
- Rehydrate/push fluids (up to 1L) for 24hrs.
- Monitor every 8hrs.
- Reassess clinical condition.

Contact healthcare provider for urgent management
- Fever/hypothermia DO NOT ASSUME UTI
 - Assess for other infections:
 - Respiratory tract
 - Skin/soft tissue
 - GI tract

Cognitive/functional changes DO NOT ASSUME UTI
- Consider/assess for:
 - Dehydration
 - Drug interaction/side effects
 - Sleep disturbances
 - Sensory deprivation
 - Hypoxia
 - Hypoglycemia
 - Constipation
 - Urinary retention
 - Increased falls
 - Worsening functional status
 - New/increased functional behaviour

Typically indicates dehydration
- Foul smelling/dark/cloudy urine alone

For more directions and guidance: www.ammi.ca | #SymptomFreeLetItBe
Discussion for “Antibiotics given for diseases which are not due to bacteria”
Case 3:

- 65F diabetic who presents with what appears to be community acquired pneumonia
- CRB-65 = 1; No oxygen
- Choice of antibiotics:
 - A) Amoxicillin-clavulanate
 - B) Amoxicillin with doxycycline
 - C) Levofloxacin or moxifloxacin
 - D) Azithromycin or Clarithromycin
Section 2: Antibiotics which are unnecessarily broad for the condition being treated
Antibiotics which are unnecessarily broad for the condition being treated

- CAP being treated with piperacillin-tazobactam, or carbapenems
 - See INESS guidelines → amoxicillin + doxycycline should suffice for majority of patients

- Most COPDE being treated with respiratory quinolines
 - FDA has removed indication for acute bronchitis due to belief harm>benefits
 - Evidence supporting antibiotics for COPD in outpatients is “low”
 - Doxycycline, macrolide, amoxicillin, TMP/SMX probably all equal “evidence”

- Piperacillin-tazobactam or carbapenem for cellulitis

- IV vancomycin in patients with “low risk” of MRSA
Case 4:

- 35F presents with fever, rigors, chills, right sided flank pain, and dysuria. Had been having burning in the urine for about 5 days prior but thought it would get better on its own. Blood pressure is 110 systolic, heart rate 90
- Scenario 1: No prior information
- Assuming oral therapy, which would you choose?
 - A) Amoxicillin-clavulanate
 - B) TMP-SMX
 - C) Ciprofloxacin
 - D) Cefixime (or ceftriaxone if in ER)
Case 4:

- 35F presents with fever, rigors, chills, right sided flank pain, and dysuria. Had been having burning in the urine for about 5 days prior but thought it would get better on its own. Blood pressure is 110 systolic, heart rate 90
- Scenario 2: 3 months ago had an *E. coli* in her urine which was **ciprofloxacin resistant**
- Assuming oral therapy, which would you choose?
 - A) Amoxicillin-clavulanate
 - B) TMP-SMX
 - C) Ciprofloxacin
 - D) Cefixime (or ceftriaxone if in ER)
What is the risk of resistance?

Patient level
 Previous resistance in clinical cultures (by drug)
What is the risk of resistance?

- NPV/PPV depend on your local prevalence!
- Example for ciprofloxacin
What is the risk of resistance?

Utility of prior cultures in predicting antibiotic resistance of bloodstream infections due to Gram-negative pathogens: a multicentre observational cohort study

D.R. MacFadden 1,*, B. Coburn 1, N. Shah 3, A. Robicsek 4, R. Savage 2, M. Elligsen 5, N. Daneman 1,6

Clinical Microbiology and Infection 24 (2018) 493–499

• Patient level
 • Previous resistance as a function of time
Vancomycin has a risk of nephrotoxicity which is probably augmented when combined with certain beta-lactams (e.g. piperacillin-tazobactam).

The goal of empiric vancomycin is mainly to cover MRSA:
- *MRSA remains “rare” in Canada*
- *Prevalence depends on ID syndrome*
- *Therefore need to cover empirically will depend on clinical presentation, any known patient epidemiology, and severity of illness*
Can I avoid vancomycin?

- Clinical presentation with MRSA unlikely cause?
- Patient not in septic shock?
- Patient not known to have MRSA?
MRSA colonization status as a predictor of clinical infection: A systematic review and meta-analysis

Guillaume Butler-Laportea,*, Samuel De L’Étoile-Morelb, Matthew P. Chenga, Emily G. McDonaldc,, Todd C. Leea,1,*,1*

a Division of Infectious Diseases, Department of Medicine, McGill University Health Center, Montréal, Canada
b Division of Internal Medicine, Department of Medicine, McGill University Health Center, Montréal, Canada
c Clinical Practice Assessment Unit, McGill University Health Centre, Montréal, Canada

Table 2
LRTI: lower respiratory tract infection, MRSA: methicillin resistant Staphylococcus aureus; SSI: surgical site infection, SSTI: skin and soft tissue infection. Graphs of post-test probability as a function of prevalence are included in the supplement.

<table>
<thead>
<tr>
<th>Infectious syndrome</th>
<th>MRSA prevalence (%) below which the negative predictive value exceeds 90% (95% CI)</th>
<th>MRSA prevalence (%) below which the negative predictive value exceeds 95% (95% CI)</th>
<th>MRSA prevalence (%) below which the positive predictive value exceeds 50% (95% CI)</th>
<th>Median and range of MRSA prevalences in included studies (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The risk of MRSA infectiona,21,22,32,44,46</td>
<td>22.9 (19.8–26.8)</td>
<td>12.4 (10.5–14.8)</td>
<td>18.6 (12.2–24.4)</td>
<td>6.1 (4.4–10.3)</td>
</tr>
<tr>
<td>The risk of MRSA bacteremia22,46</td>
<td>27.1 (21.2–36.8)</td>
<td>15.1 (11.3–21.6)</td>
<td>12.5 (6.4–19.6)</td>
<td>3.4 (2.6–4.1)</td>
</tr>
<tr>
<td>The risk of MRSA LRTI22,27,29,37,43,46</td>
<td>31.3 (23.6–40.5)</td>
<td>17.8 (12.8–24.4)</td>
<td>11.3 (9.0–13.7)</td>
<td>7.7 (3.1–10.9)</td>
</tr>
<tr>
<td>The risk of MRSA SSI31,33,34</td>
<td>17.0 (7.0–28.9)</td>
<td>9.0 (3.5–16.2)</td>
<td>31.2 (9.9–61.6)</td>
<td>16.4 (10.1–28.6)</td>
</tr>
<tr>
<td>The risk of MRSA SSTI22,30,35,36,38,40,46,47</td>
<td>18.7 (14.1–25.3)</td>
<td>9.8 (7.2–13.8)</td>
<td>11.9 (9.4–15.2)</td>
<td>33.3 (13.2–73.1)</td>
</tr>
</tbody>
</table>

Knowing that S. aureus is the pathogen, what does a MRSA colonization swab say about

<table>
<thead>
<tr>
<th>Infectious syndrome</th>
<th>MRSA prevalence (%) below which the negative predictive value exceeds 90%</th>
<th>MRSA prevalence (%) below which the negative predictive value exceeds 95%</th>
<th>MRSA prevalence (%) below which the positive predictive value exceeds 50%</th>
<th>Range of MRSA prevalences in included studies (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The risk of MRSA bacteremia13,19,41,42</td>
<td>20.7 (14.6–28.7)</td>
<td>11.1 (7.5–16.0)</td>
<td>8.1 (2.5–18.4)</td>
<td>21.1 (8.1–28.9)</td>
</tr>
<tr>
<td>The risk of MRSA SSTI28,36,38,40</td>
<td>19.4 (10.9–35.7)</td>
<td>10.4 (5.5–20.8)</td>
<td>17.1 (8.8–36.0)</td>
<td>57.4 (45.3–77.1)</td>
</tr>
</tbody>
</table>
Discussion – Section 2
Section 3 - Antibiotics by the vein when mouth will do
Antibiotics by the vein when mouth will do

Don't routinely prescribe intravenous forms of highly bioavailable antimicrobial agents for patients who can reliably take and absorb oral medications.

Antimicrobials such as fluoroquinolones, trimethoprim-sulfamethoxazole, clindamycin, linezolid, metronidazole and fluconazole have excellent bioavailability and only rarely need to be administered intravenously. Use of oral formulations of these medications reduces the need for placement and maintenance of venous access devices and their associated complications.

Sources:

Antibiotics by the vein when mouth will do

Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis

Antibiotics by the vein when mouth will do
Section 4: Antibiotic duration
Case 4:

- 35F presents with fever, rigors, chills, right sided flank pain, and dysuria. Had been having burning in the urine for about 5 days prior but thought it would get better on its own. Blood pressure is 110 systolic, heart rate 90.
- You start antibiotics and she feels better in about 48 hours.
- What duration of total therapy should the patient receive?
- A) 5 days
- B) 7 days
- C) 10 days
- D) 14 days
Late-career Physicians Prescribe Longer Courses of Antibiotics

Cesar I. Fernandez-Lazaro,1,2 Kevin A. Brown,1,3 Bradley J. Langford,1 Nick Denoman,1,4,5 Gary Garber,1,6 and Kevin L. Schwartz1,7

1Infection Prevention and Control, Public Health Ontario, Toronto, Canada; 2Department of Biomedical and Diagnostic Sciences, University of SALAMANCA, Spain; and 3Dalla Lana School of Public Health, University of Toronto, and 4Division of Infectious Diseases, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada. 5Institute of Health Policy, Management and Evaluation, University of Toronto, Canada 6Department of Medicine, Ottawa Hospital Research Institute, Canada; and 7Department of Medicine, St. Joseph’s Health Centre, Toronto, Canada

Predictors of Prolonged Antibiotic Courses • CID 2019:XX (XX:XXXX)
Late-career Physicians Prescribe Longer Courses of Antibiotics

Cesar I. Fernandez-Lazaro,1,2 Kevin A. Brown,1,3 Bradley J. Langford,1 Nick Deneman,1,4 Gary Garber,5 and Kevin L. Schwartz1,3,7

1Infection Prevention and Control, Public Health Ontario, Toronto, Canada; 2Department of Biomedical and Diagnostic Sciences, University of Saskatchewan, Saskatoon; and 3Dalhousie School of Public Health, University of Toronto, and 4Division of Infectious Diseases, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada; 5Institute of Health Policy, Management and Evaluation, University of Toronto, Canada 6Department of Medicine, Ottawa Hospital Research Institute, Canada; and 7Department of Medicine, St. Joseph’s Health Centre, Toronto, Canada

Predictors of Prolonged Antibiotic Courses • CID 2019;XX (XX.XXXX)

Table 2. Bivariate and Multivariable Logistic Regression Models Using Generalized Estimating Equation Evaluating Equation Evaluating Predictors of Prolonged Antibiotic Courses

<table>
<thead>
<tr>
<th>Variables</th>
<th>Proportion of Prolonged Antibiotic Courses (Mean ± Standard Deviation)</th>
<th>Bivariate Analyses</th>
<th>Multivariable Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician variables (N = 10,616)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>36.7% ± 19.3%</td>
<td>1.13 (1.09–1.16)</td>
<td>1.02 (0.96–1.09)</td>
</tr>
<tr>
<td>Female</td>
<td>34.0% ± 16.5%</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Career stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late career (>24 years)</td>
<td>36.6% ± 19.0%</td>
<td>1.44 (1.39–1.49)</td>
<td>1.48 (1.38–1.58)</td>
</tr>
<tr>
<td>Mid-career (11–24 years)</td>
<td>34.4% ± 17.2%</td>
<td>1.19 (1.15–1.24)</td>
<td>1.25 (1.16–1.34)</td>
</tr>
<tr>
<td>Early career (<11 years)</td>
<td>30.5% ± 13.9%</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
</tbody>
</table>
Section 4: Antibiotics given for too long

- Treating for only “as long as necessary” strikes the best balance between safety and efficacy
- But what is “necessary”?
- The reliance on multiples of 7 and 14 have more to do with ancient Roman calendar decisions than scientific evidence
- Clear evolving evidence from RCTs that “less is more” than we used to think
 - At least 40 RCTs in various disease states
Antibiotics are given for too long

- Adapted from Noah Wald-Dickler and Brad Spellberg, Short Course Antibiotic Therapy—Replacing Constantine Units with “Shorter Is Better”, Clinical Infectious Diseases January 2019

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Short (d)</th>
<th>Long (d)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Acquired Pneumonia</td>
<td>3 or 5</td>
<td>7, 8, or 10</td>
<td>Equal</td>
</tr>
<tr>
<td>Hospital Acquired/Ventilator Associated Pneumonia</td>
<td>7-8</td>
<td>14-15</td>
<td>Equal</td>
</tr>
<tr>
<td>Complicated Urinary Tract Infections/Pyelonephritis</td>
<td>5 or 7</td>
<td>10 or 14</td>
<td>Equal</td>
</tr>
<tr>
<td>Complicated/Post-Operative Intra-Abdominal Infections</td>
<td>4 or 8</td>
<td>10 or 15</td>
<td>Equal</td>
</tr>
<tr>
<td>Gram Negative Bacteremia</td>
<td>7</td>
<td>14</td>
<td>Equal</td>
</tr>
<tr>
<td>Acute Exacerbation of Chronic Bronchitis/Chronic Obstructive Pulmonary Disease (meta-analysis of 21 trials)</td>
<td>≤5</td>
<td>≥7</td>
<td>Equal</td>
</tr>
<tr>
<td>Acute Bacterial Skin and Skin Structure Infections (Cellulitis/Major Abscess)</td>
<td>5-6</td>
<td>10</td>
<td>Equal</td>
</tr>
<tr>
<td>Chronic Osteomyelitis</td>
<td>84</td>
<td>84</td>
<td>Equal</td>
</tr>
<tr>
<td>Empiric Neutropenic Fever</td>
<td>Afebrile and stable x 72h</td>
<td>Afebrile and stable x 72 h and with absolute neutrophil count > 500 cells/uL</td>
<td>Equal</td>
</tr>
</tbody>
</table>
Stewardship: Shorter = Better

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Short (d)</th>
<th>Long (d)</th>
<th>Result</th>
<th>#RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>3-5</td>
<td>5-14</td>
<td>Equal</td>
<td>10</td>
</tr>
<tr>
<td>VAP</td>
<td>8</td>
<td>15</td>
<td>Equal</td>
<td>2</td>
</tr>
<tr>
<td>Pyelo</td>
<td>5 or 7</td>
<td>10 or 14</td>
<td>Equal</td>
<td>7</td>
</tr>
<tr>
<td>Intra-abd</td>
<td>4</td>
<td>10</td>
<td>Equal</td>
<td>2</td>
</tr>
<tr>
<td>GNB Bacteremia</td>
<td>7</td>
<td>14</td>
<td>Equal</td>
<td>2*</td>
</tr>
<tr>
<td>AECB</td>
<td>≤5</td>
<td>≥7</td>
<td>Equal</td>
<td>>20</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>5-6</td>
<td>10</td>
<td>Equal</td>
<td>4**</td>
</tr>
<tr>
<td>Chronic Osteomyelitis</td>
<td>42</td>
<td>84</td>
<td>Equal</td>
<td>2</td>
</tr>
<tr>
<td>Septic Arthritis</td>
<td>14</td>
<td>28</td>
<td>Equal</td>
<td>1</td>
</tr>
<tr>
<td>Ortho Implant w/removal</td>
<td>28</td>
<td>42</td>
<td>Equal</td>
<td>1</td>
</tr>
<tr>
<td>Neutropenic Fever</td>
<td>AFx72 h</td>
<td>+ANC>500</td>
<td>Equal</td>
<td>1</td>
</tr>
<tr>
<td>P. vivax Malaria</td>
<td>7</td>
<td>14</td>
<td>Equal</td>
<td>1</td>
</tr>
</tbody>
</table>

*GNB bacteremia also in UTI/cIAI RCTs; **3 cellulitis RCTs equal, 1 (low dose oral flucox) ↑relapses; refs at https://www.bradspellberg.com/shorter-is-better
What can we do to use antibiotics more wisely? Summary

- Stop giving antibiotics for diseases which are not due to bacteria
 - Most sinusitis
 - Viral LRTI
 - Symptom-Free Pee – Let it be!

- Antibiotics which are unnecessarily broad for the condition being treated
 - Follow INESS guidelines (or develop your own)
 - Avoid knee-jerk escalation to broader beta-lactams or MRSA coverage
What can we do to use antibiotics more wisely? Summary

- Antibiotics by the vein when mouth will do
 - Avoid IV use of highly bioavailable
 - Evolving evidence for use of high dose oral stepdown from hospital to avoid complications (and costs) of IV

- Antibiotics given for too long
 - Why use 2 when 1 (week) will do?
 - Don’t be a slave to Constantine!
Open Discussion
Thank you

Questions and comments welcome

todd.lee@mcgill.ca