Get with the guidelines: Stroke prevention 2018

Theodore Wein, MD, FRCPC, FAHA
Assistant Professor of Neurology and Neurosurgery
Stroke Prevention Clinic
Montreal General Hospital
St. Mary’s Hospital
McGill University
Disclosure

- **Grants/Research Support:** NIH, Allergan, Alder Pharmaceuticals, Bayer, Boehringer Ingelheim, Accorda Therapeutics Inc., Astra Zeneca, Amgen, Servier
- **Honoraria:** Boehringer Ingelheim, Bayer, Allergan, Pfizer, Merz, Servier, Ipsen
- **Steering Committees:** REFLEX, MOBILITY, Allergan 116
- **Consulting Fees:** Allergan Inc., Boehringer Ingelheim, Bayer, Servier, Ipsen.
- **Investments:** None 😊
- **Guideline Committees:**
 1. CHEP 2017 -
 2. Canadian Cardiovascular Society
 3. Canadian Best Practice Recommendations for Stroke Care –
 2. Committee Member Rehabilitation Guidelines 2012 -2014
 3. Steering Committee 2018-
- **Board of Directors:**
 1. Canadian Stroke Consortium
 2. Quebec Heart and Stroke Foundation
Objectives

1. Be aware of the new Risk Stratification paradigm and Management following minor stroke or TIA

2. Update on the role of dual antiplatelets following minor stroke or TIA

4. Effectively manage lipids in the setting of ischemic stroke.

5. Understand the consequences of delay to Carotid endarterectomy after a TIA/Minor stroke.

Theodore Wein1,2, M Patrice Lindsay3, Robert Côte1,3, Norine Foley1,4, Joseph Berlingieri5, Sanjit Bhogal6, Aline Bourgoin1, Brian H Buck9, Jafna Cox10, Dion Davidson10, Dar Dowlatshahi11, Jim Douketis12, John Falconer13, Thalia Field14, Laura Giotis15, Gord Gubitz16, Jeffrey Habert18, Sharon Jaspers15, Chee mun Lum11, Dana McNamara Morse10, Paul Pageau10, Mubeen Rafay11, Amanda Rodger17, Bill Semchuk23, Mukul Sharma24, Ashkan Shoamanshe19, Arturo Tamayo29, Elisabeth Smits21 and David J Gladstone25, on behalf of the Heart and Stroke Foundation Canadian Stroke Best Practice Committees

Abstract
The 2017 update of The Canadian Stroke Best Practice Recommendations for the Secondary Prevention of Stroke is a collection of current evidence-based recommendations intended for use by clinicians across a wide range of settings. The goal is to provide guidance for the prevention of ischemic stroke recurrence through the identification and management of modifiable vascular risk factors. Recommendations include those related to diagnostic testing, diet and lifestyle, smoking, hypertension, hyperlipidemia, diabetes, antplatelet and anticoagulant therapies, carotid artery disease, atrial fibrillation, and other cardiac conditions. Notable changes in this sixth edition include the development of core elements for delivering secondary stroke prevention services, the addition of a section on cervical artery dissection, new recommendations regarding the management of patent foramen ovale, and the removal of the recommendations on management of sleep apnea. The Canadian Stroke Best Practice Recommendations include a range of supporting materials such as implementation resources to facilitate the adoption of evidence to practice, and related performance measures to enable monitoring of uptake and effectiveness of the recommendations. The guidelines further emphasize the need for a systems approach to stroke care, involving an interprofessional team, with access to specialists regardless of patient location, and the need to overcome geographic barriers to ensure equity in access within a universal health care system.
Introduction

• There are 62,000 strokes in Canada each year.

• 80% of people survive stroke.

• There are more than 400,000 Canadians living with long-term disability from stroke and this will almost double in the next 20 years.

• There are eight million caregivers across Canada, providing at least $25 billion of unpaid care every year.

• **Age > 60** 1 point

• **Blood Pressure**
 – (S >140 or D > 90) 1 point

• **Clinical**
 – Unilateral weakness 2 points
 – Speech disturbance not weak 1 point

• **Duration**
 – > 60 minutes 2 points
 – 10-59 min 1 point
 – <10 min 0 point

• **Diabetes** 1 point
ABCD²

<table>
<thead>
<tr>
<th></th>
<th>2 days</th>
<th>7 days</th>
<th>90 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>1.0%</td>
<td>1.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>4-5</td>
<td>4.1%</td>
<td>5.9%</td>
<td>9.8%</td>
</tr>
<tr>
<td>6-7</td>
<td>8.1%</td>
<td>11.7%</td>
<td>17.8%</td>
</tr>
</tbody>
</table>

Express Study: Effect of urgent treatment of TIA and minor stroke on early recurrent stroke

• Early initiation of existing treatment after TIA associated with reduction of 80% (NNT = 12) risk of stroke at 90 days.

*N=1278

Figure 2: Risk of recurrent stroke after first seeking medical attention in all patients with TIA or stroke who were referred to the study clinic

Lancet 2007;370:1432 –42
A transient ischaemic attack clinic with round-the-clock access (SOS-TIA): feasibility and effects

Philippe C Lavalie\'e, Elena Meseguer, Helim Abboud, Lucie Cabrejo, Jean-Marc Olivot, Olivier Simon, Mikhail Mazighi, Chantal Niffe, Philippe Niclot, Bertrand Lapergue, Isabelle F Klein, Eric Brochet, Philippe Gabriel Steg, Guy Les\'eche, Julien Labreuche, Pierre-Jean Touboul, Pierre Amarenco

Summary

Background Diagnosis and treatment of cerebral and retinal transient ischaemic attacks (TIAs) are often delayed by the lack of immediate access to a dedicated TIA clinic. We evaluated the effects of rapid assessment of patients with TIA on clinical decision making, length of hospital stay, and subsequent stroke rates.

Methods We set up SOS-TIA, a hospital clinic with 24-h access. Patients were admitted if they had sudden retinal or cerebral focal symptoms judged to relate to ischaemia and if they made a total recovery. Assessment, which included neurological, arterial, and cardiac imaging, was within 4 h of admission. A leaflet about TIA with a toll-free telephone number for SOS-TIA was sent to 15 000 family doctors, cardiologists, neurologists, and ophthalmologists in Paris and its administrative region. Endpoints were stroke within 90 days, and stroke, myocardial infarction, and vascular death within 1 year.

Findings Between January, 2003, and December, 2005, we admitted 1085 patients with suspected TIA; 574 (53%) were seen within 24 h of symptom onset. 701 (65%) patients had confirmed TIA or minor stroke, and 144 (13%) had possible TIA. 108 (17%) of the 643 patients with confirmed TIA had brain tissue damage. Median duration of symptoms was 15 min (IQR 5–75 min). Of the patients with confirmed or possible TIA, all started a stroke prevention programme, 43 (5%) had urgent carotid revascularisation, and 44 (5%) were treated for atrial fibrillation with anticoagulants. 808 (74%) of all patients seen were sent home on the same day. The 90-day stroke rate was 1.24% (95% CI 0.72–2.12), whereas the rate predicted from ABCD² scores was 5.96%.

Interpretation Use of TIA clinics with 24-h access and immediate initiation of preventive treatment might greatly reduce length of hospital stay and risk of stroke compared with expected risk.
Limitations of the ABCD2

CASE 1

60 year old female with a 5 minute history of left face/arm/leg numbness. BP 145/91. 2 days previously had right monocluar visual loss “like a shade coming over my eye” ABCD2: 2

Case 2

70 year old female with a 5 minute history of diplopia, ataxia, and hemibody numbness. ABCD2: 1

Are these really low risk patients?
<table>
<thead>
<tr>
<th>Risk For Recurrent Stroke</th>
<th>Time from Stroke Symptom Onset to Healthcare Presentation</th>
<th>Presenting Symptoms</th>
<th>When Patients Should be Seen by Healthcare Professional</th>
<th>Where Patients Should be Seen</th>
<th>Tests to be Done on Initial Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very HIGH RISK</td>
<td>Within 48 hours and 2 weeks</td>
<td>- Transient, fluctuating or persistent unilateral weakness (face, arm and/or leg) - Transient, fluctuating or persistent speech disturbance/aphasia - Fluctuating or persistent symptoms without motor weakness or speech disturbance (e.g., hemibody sensory symptoms, monocular visual loss, hemifield visual loss, ± other symptoms suggestive of posterior circulation stroke such as diplopia, dysarthria, and/or ataxia).</td>
<td>Immediately</td>
<td>Emergency Department [ideally ED with brain imaging onsite and access to alteplase (tPA)]</td>
<td>CT/CTA or MRI/MRA (aortic arch to vertex), ECG, Lab Work (Table 3)</td>
</tr>
<tr>
<td>HIGH RISK</td>
<td>Between 48 hours and 2 weeks</td>
<td>- Transient, fluctuating or persistent unilateral weakness (face, arm, and/or leg), or speech disturbance/aphasia</td>
<td>As soon as possible, ideally within 24 hours</td>
<td>Stroke Prevention Clinic with Neurologist or Stroke Specialist, Nurse Practitioner</td>
<td>CT/CTA or MRI/MRA (aortic arch to vertex), ECG, Lab Work (Table 3)</td>
</tr>
<tr>
<td>Moderate (INCREASED) RISK</td>
<td>Between 48 hours and 2 weeks</td>
<td>- Fluctuating or persistent symptoms without motor weakness or speech disturbance (e.g., hemibody sensory symptoms, monocular vision loss, binocular diplopia, hemifield vision loss, or ataxia)</td>
<td>As soon as possible, ideally within 2 weeks</td>
<td>Stroke Prevention Clinic with Neurologist or Stroke Specialist, Nurse Practitioner</td>
<td>CT/CTA or MRI/MRA (aortic arch to vertex), ECG, Lab Work (Table 3)</td>
</tr>
<tr>
<td>LOWER RISK</td>
<td>More than 2 weeks</td>
<td>- Any typical or atypical symptoms of stroke or transient ischemic attack</td>
<td>Ideally within 1 month</td>
<td>Ambulatory Clinic with access to Neurologist or Stroke Specialist, Nurse Practitioner</td>
<td>As appropriate based on assessment by health care team</td>
</tr>
</tbody>
</table>

Table 2. Summary of HSF recurrent stroke risk levels and initial management (based on CSBPR Secondary Prevention of Stroke, Section 1: Initial Risk Stratification and Management)

Published in: Theodore Wein; M Patrice Lindsay; Robert Côté; et al. *International Journal of Stroke* 13, 420-443. DOI: 10.1177/1747493017743062. Copyright © 2017 World Stroke Organization
Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA

S. Claiborne Johnston, M.D., Ph.D., J. Donald Easton, M.D., Mary Farrant, M.B.A., William Barsan, M.D., Robin A. Covitt, M.D., Jordan J. Elm, Ph.D., Anthony S. Kim, M.D., Anne S. Lindblad, Ph.D., and Yuko Y. Palevski, Ph.D., for the Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators

ABSTRACT

BACKGROUND
Combination antiplatelet therapy with clopidogrel and aspirin may reduce the rate of recurrent stroke during the first 3 months after a minor ischemic stroke or transient ischemic attack (TIA). A trial of combination antiplatelet therapy in a Chinese population has shown a reduction in the risk of recurrent stroke. We tested this combination in an international population.

METHODS
In a randomized trial, we assigned patients with minor ischemic stroke or high-risk TIA to receive either clopidogrel at a loading dose of 600 mg on day 1, followed by 75 mg per day, plus aspirin at a dose of 50 to 325 mg per day, or the same range of doses of aspirin alone. The dose of aspirin in each group was selected by the site investigator. The primary efficacy outcome in a time-to-event analysis was the risk of a composite of major ischemic events, which was defined as ischemic stroke, myocardial infarction, or death from an ischemic vascular event, at 90 days.

RESULTS
A total of 4891 patients were enrolled at 269 international sites. The trial was halted after 84% of the anticipated number of patients had been enrolled because the data and safety monitoring board had determined that the combination of clopidogrel and aspirin was associated with both a lower risk of major ischemic events and a higher risk of major hemorrhage than aspirin alone at 90 days. Major ischemic events occurred in 121 of 2452 patients (5.0%) receiving clopidogrel plus aspirin and in 166 of 2449 patients (6.5%) receiving aspirin plus placebo (hazard ratio, 0.7; 95% confidence interval [CI], 0.59 to 0.90; P = 0.02), with most events occurring during the first week after the initial event. Major hemorrhage occurred in 23 patients (0.9%) receiving clopidogrel plus aspirin and in 10 patients (0.4%) receiving aspirin plus placebo (hazard ratio, 2.52; 95% CI, 1.10 to 5.67; P = 0.03).

CONCLUSIONS
In patients with minor ischemic stroke or high-risk TIA, those who received a combination of clopidogrel and aspirin had a lower risk of major ischemic events but a higher risk of major hemorrhage at 90 days than those who received aspirin alone. (Funded by the National Institute of Neurological Disorders and Stroke; POINT ClinicalTrials.gov number, NCT00991863.)
Table 2. Efficacy and Safety Outcomes.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Clopidogrel plus Aspirin (N = 2432)</th>
<th>Aspirin (N = 2449)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary efficacy outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite of ischemic stroke, myocardial infarction, or death from ischemic vascular causes</td>
<td>121 (5.0)</td>
<td>160 (6.5)</td>
<td>0.75 (0.59–0.95)</td>
<td>0.02</td>
</tr>
<tr>
<td>Secondary efficacy outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>112 (4.6)</td>
<td>155 (6.3)</td>
<td>0.72 (0.56–0.92)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>10 (0.4)</td>
<td>7 (0.3)</td>
<td>1.44 (0.55–3.78)</td>
<td>0.46*</td>
</tr>
<tr>
<td>Death from ischemic vascular causes</td>
<td>6 (0.2)</td>
<td>4 (0.2)</td>
<td>1.51 (0.43–5.35)</td>
<td>0.52*</td>
</tr>
<tr>
<td>Ischemic or hemorrhagic stroke</td>
<td>116 (4.8)</td>
<td>156 (6.4)</td>
<td>0.74 (0.58–0.94)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Composite of ischemic stroke, myocardial infarction, death from ischemic vascular causes, or major hemorrhage</td>
<td>141 (5.8)</td>
<td>167 (6.8)</td>
<td>0.84 (0.67–1.05)</td>
<td>0.13*</td>
</tr>
<tr>
<td>Primary safety outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major hemorrhage</td>
<td>23 (0.9)</td>
<td>10 (0.4)</td>
<td>2.32 (1.10–4.87)</td>
<td>0.02</td>
</tr>
<tr>
<td>Other safety outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>5 (0.2)</td>
<td>3 (0.1)</td>
<td>1.68 (0.40–7.03)</td>
<td>0.47</td>
</tr>
<tr>
<td>Symptomatic intracerebral hemorrhage</td>
<td>2 (0.1)</td>
<td>2 (0.1)</td>
<td>1.01 (0.14–7.14)</td>
<td>0.99</td>
</tr>
<tr>
<td>Other symptomatic intracranial hemorrhage</td>
<td>2 (0.1)</td>
<td>0</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Major hemorrhage other than intracranial hemorrhage</td>
<td>17 (0.7)</td>
<td>7 (0.3)</td>
<td>2.45 (1.01–5.90)</td>
<td>0.04</td>
</tr>
<tr>
<td>Minor hemorrhage</td>
<td>40 (1.6)</td>
<td>13 (0.5)</td>
<td>3.12 (1.67–5.83)</td>
<td><0.001</td>
</tr>
<tr>
<td>Death from any cause</td>
<td>18 (0.7)</td>
<td>12 (0.5)</td>
<td>1.51 (0.73–3.13)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Post hoc correction for multiple testing of five secondary end points by the Bonferroni method resulted in a P value of 0.01 to indicate a significant difference between groups.
Identification of candidates for PFO closure in the echocardiography laboratory
Table 1. Six Trials of Patent Foramen Ovale Closure for Stroke with Results Published in the Journal.

<table>
<thead>
<tr>
<th>Trial Name (Year of Publication)</th>
<th>No. of Patients</th>
<th>Mean or Median No. of Years of Follow-up</th>
<th>Comparator</th>
<th>Primary Outcome</th>
<th>Hazard Ratio†</th>
<th>P Value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trials with negative findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSURE I (2012)</td>
<td>900</td>
<td>2</td>
<td>Antiplatelet therapy, warfarin, or both</td>
<td>Composite of stroke or transient ischemic attack at 2 years, death from any cause during the first 30 days, or death from neurologic causes between 31 days and 2 years after randomization</td>
<td>0.78</td>
<td>0.17</td>
</tr>
<tr>
<td>PC (2013)</td>
<td>414</td>
<td>4.1 (PFO closure group), 4.0 (medical-therapy group)</td>
<td>Antiplatelet therapy or anticoagulation‡</td>
<td>Composite of death, stroke, transient ischemic attack, or peripheral embolism</td>
<td>0.63</td>
<td>0.34</td>
</tr>
<tr>
<td>RESPECT (2013)</td>
<td>980</td>
<td>2.1</td>
<td>Antiplatelet therapy or warfarin</td>
<td>Composite of recurrent non-fatal ischemic stroke, fatal ischemic stroke, or early death after randomization</td>
<td>0.49</td>
<td>0.08</td>
</tr>
<tr>
<td>Trials with positive findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gore REDUCE (2017)</td>
<td>664</td>
<td>3.2</td>
<td>Antiplatelet therapy</td>
<td>Ischemic stroke and new brain infarction on imaging</td>
<td>0.23</td>
<td>0.002</td>
</tr>
<tr>
<td>CLOSE (2017)</td>
<td>663</td>
<td>5.3</td>
<td>Antiplatelet therapy or anticoagulation‡</td>
<td>Stroke</td>
<td>0.03</td>
<td><0.001</td>
</tr>
<tr>
<td>RESPECT extended follow-up (2017)</td>
<td>980</td>
<td>5.9</td>
<td>Antiplatelet therapy or warfarin</td>
<td>Composite of recurrent non-fatal ischemic stroke, fatal ischemic stroke, or early death after randomization</td>
<td>0.33</td>
<td>0.046</td>
</tr>
</tbody>
</table>

CLOSE denotes Patent Foramen Ovale Closure or Anticoagulants versus Antiplatelet Therapy to Prevent Stroke Recurrence, CLOSURE I Evaluation of the STARFlex Sejtal Closure System in Patients with a Stroke and/or Transient Ischemic Attack due to Presumed Paradoxical Embolism through a Patent Foramen Ovale, Gore REDUCE Gore HELEX Septal Occluder and Antiplatelet Medical Management for Reduction of Recurrent Stroke or Imaging-Confirmed TIA in Patients with Patent Foramen Ovale (PFO), PC Clinical Trial Comparing Percutaneous Closure of Patent Foramen Ovale Using the Ampliflex PFO Occluder with Medical Treatment in Patients with Cryptogenic Embolism, and RESPECT Randomized Evaluation of Recurrent Stroke Comparing PFO Closure to Established Current Standard of Care Treatment.

† The hazard ratio and P value are for the expected probability of stroke or other primary outcome after closure of the PFO versus medical treatment in the intention-to-treat analysis.

‡ Anticoagulation refers to any form of anticoagulation.
Note: These recommendations are applicable to ischemic stroke and transient ischemic attack.

9.1 Patent Foramen Ovale (PFO) (Revised 2017)

i. Patients with a recent ischemic stroke or TIA attributed to a PFO should have an evaluation by a clinician with stroke and cardiovascular expertise [Evidence Level C].

ii. For carefully-selected patients with a recent ischemic stroke or TIA attributed to a PFO, PFO device closure plus long-term antiplatelet therapy is recommended over long-term antithrombotic therapy alone provided all the following criteria are met. [Evidence Level A]:
 a. Age 18-60 years;
 b. The diagnosis of the index stroke event is confirmed by imaging as a non-lacunar embolic ischemic stroke or a TIA with positive neuroimaging or cortical symptoms;
 c. The patient has been evaluated by a neurologist or clinician with stroke expertise, and the PFO is felt to be the most likely cause for the index stroke event following a thorough etiological evaluation to exclude alternate etiologies.

iii. For patients requiring long-term anticoagulation, the decision regarding PFO closure remains unclear, and decisions should be based on individual patient characteristics and risk versus benefit profile [Evidence C].

iv. For patients with a recent ischemic stroke or TIA attributed to a PFO who do no undergo PFO closure and are aged 60 years or younger, either antiplatelet or anticoagulant therapy is recommended for secondary stroke prevention, unless there is a separate evidence-based indication for chronic anticoagulant therapy [Evidence Level B].

v. There is insufficient evidence to make a recommendation regarding the comparative effectiveness of PFO closure vs. anticoagulant therapy.
Case Presentation

45 year old diabetic male presents with a transient pure motor hemiparesis that lasted for 10 minutes. As part of his stroke investigation he is found to have a large PFO with right to left shunt. His vascular imaging is unremarkable and a holter monitor shows no evidence of PAF.

A. This man should be sent for PFO closure based on the recent CLOSE, RESPECT and REDUCE trials.
B. This man should have his PFO closed only if a thrombophelia work up is negative.
C. More information is required regarding the size of the PFO, the number of bubbles present on TEE and whether an atrial septal aneurysm is present
D. This man is not a candidate for PFO closure
Case of Brother Darryl

- 75 year old male seen in stroke prevention clinic. He is here for his 6 month post stroke follow-up. His LDL-C today is 2.3 mmol/L. At the time of his event it was 3.5 mmol/L and he was placed on Atorvastatin 80mg.

- PMHx: Stroke, HTN, hyperlipidemia

Question:
1) Are you satisfied with this LDL level?
2) Should it be lowered even more?
Case of other brother Darryl

- 73 year old male seen in stroke prevention clinic. He is here for his 6 month post stroke follow-up. His LDL-C today is 2.0 mmol/L (77mg/dl). At the time of his event it was 3.5mmol/L (135mg/dl) 2.8 and he was placed on Atorvastatin 80mg.

- PMHx: Stroke, HTN, hyperlipidemia, stable CAD.

Question:
1) Are you satisfied with this LDL level?
2) Should it be lowered?
Cholesterol and Stroke Risk

LANCET 1995; 346: 1647-1653.

Evans County black cohort [15]
Evans County white cohort [15]
Norwegian Counties [19]
Rancho Bernado [18]
Busselton [17]
Tecumseh [16]
Whitehall [14]
Akita [13]
Finrisk [11,12]
Israel [10]
Paisley & Renfrew [9]
Framingham [8]
Honolulu [7]
Hiroshima & Nagasaki [5,6]
Seven countries [4]
NHEFS [3]
Finnish Mobile Clinic [2]
Varmland [1]
Other cohorts (subtotal) [20-35]

All studies (total)

0.50 0.75 1.00 1.50 2.00
0.98 SD 0.02
Cholesterol Reduction and the Risk for Stroke in Men: Non-Statin Trials

Intervention
- Cholestyramine
- CDP (Niacin)
- Laren-Oslo (Diet)
- Minnesota Coronary (Diet)
- Dayton-Wadsworth VA (Diet)
- HHS (Gemfibrozil)
- Stockholm (Clofibrate / Niacin)
- WHO (Clofibrate)
- CDP (Clofibrate)
- Hjermann-Oslo (Diet/smoking/HTN)
- MRFIT (diet/smoking/HTN)

Odds Ratio of Fatal Stroke

Inverse association of dietary fat with development of ischemic stroke in men.

Gillman MW, Cupples LA, Millen BE, Ellison RC, Wolf PA. JAMA:1997;2145-50

Department of Ambulatory Care and Prevention, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA.

CONTEXT: A few ecological and cohort studies in Asian populations suggest an inverse association of the intake of both fat and saturated fat with risk of stroke. However, data among western populations are scant. OBJECTIVE: To examine the association of stroke incidence with intake of fat and type of fat among middle-aged US men during 20 years of follow-up. DESIGN AND SETTING: The Framingham Heart Study, a population-based cohort study. PARTICIPANTS: A total of 832 men, aged 45 through 65 years, who were free of cardiovascular disease at baseline (1966-1969). MEASUREMENTS AND DATA ANALYSIS: The diet of each subject was assessed at baseline by a single 24-hour dietary recall, from which intakes of energy and macronutrients were estimated. In Kaplan-Meier analyses, we calculated age-adjusted cumulative incidence rates of stroke. Using Cox regression, we estimated stroke incidence relative risks during 20 years of follow-up. MAIN OUTCOME MEASURE: Incidence of ischemic stroke, which occurred in 61 subjects during the follow-up period. RESULTS: Mean intakes were 10975 kJ for energy, 114 g (39% of energy) for total fat, 44 g (15%) for saturated fat, 46 g (16%) for monounsaturated fat, and 16 g (5%) for polyunsaturated fat. Risk of ischemic stroke declined across the increasing quintile of total fat (log-rank trend P=.008), saturated fat (P=.002), and monounsaturated fat (P=.008) but not polyunsaturated fat (P=.33). The age- and energy-adjusted relative risk for each increment of 3% of energy from total fat was 0.85 (95% confidence interval [CI], 0.78-0.94); for an increment of 1% from saturated fat, 0.91 (95% CI, 0.85-0.98); and for 1% from monounsaturated fat, 0.89 (95% CI, 0.83-0.96). Adjustment for cigarette smoking, glucose intolerance, body mass index, blood pressure, blood cholesterol level, physical activity, and intake of vegetables and fruits and alcohol did not materially change the results. Too few cases of hemorrhagic stroke (n=14) occurred to draw inferences. CONCLUSION: Intakes of fat, saturated fat, and monounsaturated fat were associated with reduced risk of ischemic stroke in men.
Meta-analysis of major statin trials that assessed the effect of statins on fatal and non-fatal stroke

<table>
<thead>
<tr>
<th>Primary prevention of stroke</th>
<th>Active group (%)</th>
<th>Control group (%)</th>
<th>RR (95% CI)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEARCH</td>
<td>4.2</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUPITER</td>
<td>0.4</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPEN</td>
<td>2.8</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGA</td>
<td>1.3</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDEAL</td>
<td>3.4</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT</td>
<td>2.9</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>2.9</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARDS</td>
<td>1.5</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROVE-IT</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A to Z</td>
<td>1.2</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCOT-LTT</td>
<td>1.7</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLHAT-LTT</td>
<td>4.0</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREACE</td>
<td>1.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPS (with no prior CVD)</td>
<td>3.2</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPER</td>
<td>4.7</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRACL</td>
<td>0.8</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GISSI</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFCAPS-TexCAPS</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPID (with no prior CVD)</td>
<td>3.3</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-CABG</td>
<td>2.6</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARE (with no prior CVD)</td>
<td>1.9</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOSCOPS</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSSS</td>
<td>2.5</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: $p<0.0001$ (heterogeneity: $I^2=26.6\%$, $p=0.12$)

<table>
<thead>
<tr>
<th>Secondary prevention of stroke</th>
<th>Active group (%)</th>
<th>Control group (%)</th>
<th>RR (95% CI)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARCL</td>
<td>11.2</td>
<td>13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPS (with prior CVD)</td>
<td>10.3</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPID (with prior CVD)</td>
<td>9.5</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARE (with prior CVD)</td>
<td>13.5</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: $p=0.003$ (heterogeneity: $I^2=8.0\%$, $p=0.39$)

Total: $p<0.0001$ (heterogeneity: $I^2=7.3\%$, $p=0.36$)

Amarenco et al Lancet Neurol. 2009,8:453-464
SPARCL TRIAL

Mean LDL 1.9mmo/L
Who Benefited the Most in SPARCL
Relationship between change in LDL-C and risk of stroke.

Pierre Amarenco et al. Stroke. 2007;38:3198-3204
Stroke Event based on LDL results in SPARCL

<p>| Table 3. Time-Varying Nominal Value in LDL-C Results for First Event in Composite |
|---------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Events</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2.6 mmol/L</td>
<td>336</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td>1.8 to <2.6 mmol/L</td>
<td>104</td>
<td>1.01 (0.81 to 1.27)</td>
<td>0.9076</td>
</tr>
<tr>
<td><1.8 mmol/L</td>
<td>136</td>
<td>0.72 (0.59 to 0.89)</td>
<td>0.0013</td>
</tr>
<tr>
<td>Fatal stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2.6 mmol/L</td>
<td>40</td>
<td>1.00</td>
<td>NA</td>
</tr>
<tr>
<td>1.8 to <2.6 mmol/L</td>
<td>11</td>
<td>1.08 (0.52 to 2.22)</td>
<td>0.8456</td>
</tr>
<tr>
<td><1.8 mmol/L</td>
<td>14</td>
<td>0.83 (0.31 to 2.6)</td>
<td>0.1967</td>
</tr>
<tr>
<td>Nonfatal stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amarenco et al Stroke. 2007, 38:3198-3204
Patients who have had an ischemic stroke or transient ischemic attack should have their serum lipid levels assessed and aggressively managed [Evidence level A].

4.1 Lipid assessment

i. Lipid levels, including total cholesterol, total triglycerides, low-density lipoprotein [LDL] cholesterol, and high-density lipoprotein [HDL] cholesterol, should be measured on all patients presenting with stroke or transient ischemic attack [Evidence Level B].

2. Lipid management

ii. Patients with ischemic stroke or transient ischemic attack should be managed with aggressive therapeutic lifestyle changes to lower lipid levels, including dietary modification, as part of a comprehensive approach to lower risk of first or recurrent stroke unless contra-indicated [Evidence Level B]. Refer to Prevention of Stroke Module, Section 2 for lifestyle Management recommendations.

iii. A statin should be prescribed for secondary prevention in patients who have had an ischemic stroke or transient ischemic attack in order to achieve a target LDL cholesterol consistently less than 2.0 mmol/L or >50% reduction of LDL cholesterol, from baseline [Evidence Level B].

a. For individuals with stroke, acute coronary syndrome or established coronary disease, treatment to more aggressive targets (LDL-C <1.8 mmol/L or >50% reduction) may be considered [Evidence Level A].

iv. Adults with diabetes and ischemic stroke are at high risk of further vascular events and should also be treated with a statin to achieve a low-density lipoprotein cholesterol ≤2.0 mmol/L [Evidence Level B].

v. Statin therapy is not indicated for prevention of intracerebral hemorrhage [Evidence Level B].
Question

Which individuals showed the greatest risk reduction in stroke recurrence in the SPARCL trial?

A. Individuals whom had treatment LDL’s of < 2.0 mmol/L
B. Individuals whom had 50% reductions in LDL’s
C. Individuals whom had treatment LDL’s of < 1.3 mmol/L
D. A and B
E. None of the above
Following a TIA - Did you know

- Carotid stenosis > 50% is linked with high risk of early recurrence!

 HR 2.6 (95% CI 1.28-5.2)

- > 70% stenosis HR 3.3 (95% CI 1.5-7.4)

- NASCET 90-day risk of stroke >25% for those pts with non-retinal TIA attributable to 70-99% ICAS

- In pts with medically treated high-grade ICAS, 43.5% of those presenting with a hemispheric TIA had a stroke within 2 years
 - Half of the strokes occurred within the first month

Sheehan et al. Stroke 2010;41:844-845
Figure 5: **Absolute reduction with surgery in the 5-year cumulative risk of ipsilateral carotid ischaemic stroke and any stroke or death within 30 days after trial surgery in patients with 50–69% stenosis and ≥70% stenosis without near-occlusion stratified by the time from last symptomatic event to randomisation**

Lancet, 2004
Fig. 2. Number of strokes prevented at 5 years by performing 1000 CEAs. Effect of gender and timing from event to CEA on prevention of late stroke relative to degree of stenosis (recalculated from CETC data10–12 and reproduced with permission from AR Naylor).8
Risk of recurrent ipsilateral ischemic stroke or retinal artery occlusion (RAO) within 90 days of the presenting event, prior to CEA or CAS
Carotid Endarterectomy

• NNT=5 to prevent 1 ipsilateral stroke in 5 years treated within 2 weeks

• NNT 125 if after 12 weeks

• Patients with symptomatic carotid stenosis represent 10-15% of patients but account for ~50% or recurrences.

Conclusions

• TIA’s should be managed on an urgent basis.

• Dual anti-platelets are recommended following a TIA for 21-30 days.

• Lipid lowering of LDL < 2.0 mmol/L or 50% reduction in LDL should be targets for stroke prevention.

• PFO closure beneficial in select patient under the age of 60

• Carotid Endarterectomy should be performed ASAP following TIA.
Thank you for your time.